
 

AI6002 

Capstone for Artificial Intelligence 

Proposal Team-2 

Visual Question Answering Web-Application for 

Scene Understanding 

Faculty of Engineering and Applied Science 

 

 

 

 

Team-2 Members: 

Thevananthan Thevarasa - MUN# 202094858 

Aayush Rijal   - MUN# 202292045 

MBA Roldan   - MUN# 202285725 

 

 



   
 

i | P a g e  
 

Table of Contents 
1. Problem Statement ................................................................................................................. 1 

1.1. Key Components and Objectives: .................................................................................... 1 

1.2. Potential Applications ...................................................................................................... 2 

2. Cloud Deployed VQA Web-App .............................................................................................. 4 

3. Brief-Summary of Relevant Works Referred. ......................................................................... 5 

3.1. Making the V in VQA Matter ............................................................................................ 5 

3.2. Vision-and-Language Transformer . ................................................................................. 5 

3.3. Grad-CAM. ........................................................................................................................ 6 

3.4. Bottom-Up and Top-Down Attention .............................................................................. 7 

4. Dataset .................................................................................................................................... 8 

4.1. VQA 2.0 Dataset Overview: .............................................................................................. 8 

4.2. VQA Annotations: ............................................................................................................. 8 

4.3. VQA Input Questions: ....................................................................................................... 9 

4.4. VQA Input Images from COCO: ...................................................................................... 10 

4.5. Training, Validation, Test partitioning of Dataset .......................................................... 10 

4.6. Python script to download and extract the Dataset. ..................................................... 11 

5. VQA Models .......................................................................................................................... 12 

5.1. VQA is a Multimodal Task. ............................................................................................. 12 

5.2. LSTM, VGG19 Based Stacked Attention Model.............................................................. 13 

5.3. ViLT: Vision-and-Language Transformer ........................................................................ 14 

5.4. Gtp-4v Model ................................................................................................................. 16 

6. Front End User Interface ....................................................................................................... 17 

6.1. USER Interface Operation sequence. ............................................................................. 17 

6.2. login Page. ...................................................................................................................... 17 

6.3. Register Page. ................................................................................................................. 18 

6.4. Home Page. .................................................................................................................... 19 

6.5. User Accuracy Page. ....................................................................................................... 22 

6.6. Model Accuracy Page. .................................................................................................... 23 

7. Back-End: Flask Web Application. ......................................................................................... 25 



   
 

ii | P a g e  
 

7.1. Back-End Architecture .................................................................................................... 25 

7.2. Database Integration ...................................................................................................... 29 

8. Cloud Deployment ................................................................................................................ 31 

8.1. Server Side ...................................................................................................................... 32 

8.2. Client Side ....................................................................................................................... 33 

9. System Evaluation - Beta Testing .......................................................................................... 34 

9.1. User Feedback collection. .............................................................................................. 34 

9.2. Overall Model Accuracy after Beta Testing .................................................................... 35 

10. Repository Management ................................................................................................... 36 

10.1. Milestones .................................................................................................................. 36 

10.2. Issues Status ............................................................................................................... 37 

11. Project Timeline ................................................................................................................. 40 

12. References ......................................................................................................................... 41 

 

 

Table of Figures 

Figure 1 - VQA Chat app guide notes .............................................................................................. 4 

Figure 2 - VQA2.0 Dataset download structure ............................................................................ 11 

Figure 3 - VQA Multimodal approach diagram ............................................................................. 12 

Figure 4 - Stacked Attention Model CVPR 2019 ........................................................................... 13 

Figure 5 - Vision and Language Transformer ICML 2021 .............................................................. 14 

Figure 6 - User Interface Operation Sequence ............................................................................. 17 

Figure 7 - Frontend page look of login page ................................................................................. 18 

Figure 8  - Frontend page look of User Registration Page. ........................................................... 19 

Figure 9 - Frontend page view of Homepage ............................................................................... 22 

Figure 10 - Frontend page view of User Accuracy page ............................................................... 23 

Figure 11 - Frontend page view of User Accuracy page ............................................................... 24 

Figure 12 - VQA Web application structure layout ....................................................................... 26 

Figure 13 - Integration of html templates in our web application ............................................... 28 

Figure 14 - Illustration of the SQLAlchemy  integration in the Back end ..................................... 30 

Figure 15 - Cloud Deployment Diagram ........................................................................................ 31 

Figure 16 - Demonstration of UserAccuracy.html page ............................................................... 34 

Figure 17 - Demonstration of ModelAccuracy.html page ............................................................ 35 

Figure 18 - Milestones for Capstone_project_team2 ................................................................... 36 

Figure 19 - Project Timeline .......................................................................................................... 40 



   
 

1 | P a g e  
 

1. Problem Statement 
 

In the Last few years, deep neural networks have had a significant influence on the disciplines of 

computer vision and natural language processing. We can now create models that accurately 

identify items in the photos. But our knowledge of pictures is still far below that of humans. When 

we look at images as humans, we don't only observe the things; we also comprehend how they 

interact and may infer their state and characteristics. VQA is particularly intriguing since it 

enables us to comprehend what our models actually perceive. 

Our Capstone focuses on Developing Visual Question Answering (VQA) Chat application based 

on  scene understanding, wherein the system must harness the synergy of computer vision, 

natural language processing, and commonsense knowledge to accurately respond to user-

generated questions related to visual content. 

Our proposed VQA system provides solution for Scene understanding for images that are 

captured around our outdoor or Indoor surroundings.  

1.1. Key Components and Objectives: 
 

Three Major Challenges: 

1. Visual Understanding: The system should have the capability to analyze and comprehend 

the content of images and videos, extracting relevant information about objects, people, 

actions, and spatial relationships. 

2. Natural Language Processing: The application must be able to process and understand 

natural language questions posed by users. This includes handling a variety of question 

types, such as "What," "Where," "Why," and "How." 

3. Commonsense Reasoning: The system should integrate a repository of commonsense 

knowledge to enable it to answer questions that may not have explicit information in the 

visual content. For instance, it should be able to infer answers to questions like “Why are 

the men jumping?”, “What is the kid doing?” 

 

Other System Design Challenges: 

1. Multimodal Integration: The application must seamlessly fuse the understanding of 

visual content and the interpretation of natural language questions to provide coherent 

and contextually relevant answers. 



   
 

2 | P a g e  
 

2. User Interaction: The user interface should be user-friendly, allowing users to upload 

images or input URLs, pose questions in natural language, and receive timely and accurate 

responses. 

3. Accuracy and Efficiency: The system should strive to provide accurate answers in real-

time or with minimal delay. It should handle a wide range of questions and images, 

ensuring high precision and recall. 

4. User Feedback and Learning: Incorporate mechanisms for users to provide feedback on 

the system's responses, enabling iterative improvement and learning from user 

interactions. 

The successful development of this Visual Question Answering web application, combining vision, 

language, and commonsense knowledge, will not only enhance our ability to understand and 

interact with visual content but also have practical applications in fields like education, 

accessibility, content retrieval, and more. 

 

1.2.  Potential Applications  
 

Summary:  

A single universal system with one VQA model wouldn’t be able to handle all the potential 

applications and scenarios listed in this section.   

Our proposed VQA system provides a solution for Scene understanding for images that are 

captured around our outdoor or Indoor surroundings. 

But the followings Listed potential applications would require model changes, different training 

Dataset, different fine tuning and validation methodologies based on the application Criteria, 

Field of Application and Level of scene understanding and Language understanding demanded.  

A. Educational Assistance: 

This VQA system can be used to create interactive educational content. Teachers and students 

can upload images or videos related to a particular topic or concept, and students can ask 

questions about the content. The system will provide informative answers, helping students 

better understand the material. It can also be used in e-learning platforms for self-paced learning, 

making educational resources more engaging and effective. 

B. Accessibility Support for the Visually Impaired: 

Visually impaired individuals can use this system to gain a deeper understanding of their 

surroundings. They can take a picture with a smartphone, ask questions about it (e.g., "What's in 

the picture to my left?"), and receive spoken answers, enabling them to navigate their 



   
 

3 | P a g e  
 

environment and interact with visual content in a meaningful way. This promotes greater 

independence and inclusion for the visually impaired community. 

C. Content-Based Image and Video Search: 

Instead of relying on metadata or manual annotations, a VQA system can be used to search for 

images or videos based on their content. Users can describe what they are looking for in natural 

language (e.g., "Find images of a red sunset over a beach with palm trees") and get results that 

closely match their descriptions. This simplifies content retrieval in image and video databases. 

D. Virtual Assistants and Chatbots: 

Integrating VQA into virtual assistants or chatbots can enhance their ability to assist users with 

visual and context-dependent inquiries. For instance, a virtual assistant could help users plan a 

trip by analyzing and answering questions about travel photos, weather, landmarks, and more, 

all through a conversational interface. 

E. Retail and E-commerce: 

E-commerce websites can employ VQA to improve the shopping experience. Users can upload a 

picture of an item they're interested in, and the system can answer questions like "Where can I 

buy this?" or "Are there any discounts available?" This simplifies product discovery and enhances 

the customer's shopping journey. 

F. Healthcare Diagnosis and Training: 

In the healthcare sector, a VQA system can aid in diagnosing medical conditions from medical 

imagery (e.g., X-rays, MRI scans) by answering questions like "What abnormalities are present in 

this X-ray?" Additionally, it can be used in training medical professionals by providing insights 

into medical images and procedures, improving medical education. 

G. Content Moderation and Reporting: 

On social media and content-sharing platforms, a VQA system can assist in content moderation. 

It can identify and report inappropriate or harmful content by analyzing images and answering 

questions like "Is this content safe for all audiences?" This helps maintain a safer online 

environment. 

H. Tourism and Travel Planning: 

Travelers can use the VQA system to plan their trips. They can upload images of destinations or 

landmarks and ask questions like "What are the must-visit places in this city?" The system can 

provide recommendations based on visual input and contextual questions. 

 

 



   
 

4 | P a g e  
 

2. Cloud Deployed VQA Web-App 
 

Cloud URL: http://ec2-18-219-100-175.us-east-2.compute.amazonaws.com 

Shrinked URL: https://tinyurl.com/vqat2 

• use Mobile or laptop 

• Create a New Account using sign-up 

• Login with username(not email!) and password. 

• Select an Image from Gallery or PC or Camera 

• Submit the Image, Wait for Response.. 

• Ask a Question on image, Wait for Response! 

• Provide Feedback! 

 

 

Figure 1 - VQA Chat app guide notes 

 

http://ec2-18-219-100-175.us-east-2.compute.amazonaws.com/
https://tinyurl.com/vqat2


   
 

5 | P a g e  
 

3. Brief-Summary of Relevant Works Referred. 
We referred to some of the top papers from the journal i.e., Conference on Computer Vision and 

Pattern Recognition (CVPR) and find out state of art techniques in the field of VQA. The relevant 

works and some takeaways from the papers are described below: - 

 

3.1. Making the V in VQA Matter  
 

The VQA model referenced demonstrates an integrative approach combining convolutional 

neural networks (CNNs) for visual feature extraction and Long Short-Term Memory (LSTM) 

networks for processing sequential text data. The model architecture involves a hierarchical 

processing pipeline where image features extracted via a CNN are normalized and then combined 

with text features from a 2-layer LSTM through point-wise multiplication. This joint 

representation is then condensed through successive fully-connected layers, culminating in a 

softmax layer that outputs a probability distribution over potential answers. [1] 

 

Performance logs indicate that the model is trained over 30 epochs, showing a consistent 

decrease in training loss and a gradual increase in accuracy for both experiments (Exp1 and Exp2), 

evidencing the model's learning and improvement. Moreover, the validation loss remains 

relatively stable across epochs, suggesting robust generalization capabilities. The related works 

section would emphasize the model's proficiency in learning representations and highlight its 

steady progress in training as reflected in the training logs, underscoring its relevance and 

contribution to the field of Visual Question Answering. 

 

3.2. Vision-and-Language Transformer. 
 

Recent advancements in the domain of Visual Question Answering (VQA) have been epitomized 

by the introduction of the Vision-and-Language Transformer (ViLT) model. This innovative model 

represents a paradigm shift in multimodal learning, eschewing the computationally intensive 

convolutional operations and region-specific annotations traditionally relied upon in VQA tasks. 

[2] 

ViLT leverages a streamlined architecture that processes raw image patches and text tokens 

through shallow embedding layers, analogous in computational simplicity. The central 

component of ViLT is a transformer encoder which concurrently processes the sequences of text 

and image patch embeddings. This single-stream approach contrasts with dual-stream 



   
 

6 | P a g e  
 

methodologies, enabling a more parameter-efficient model that fosters robust inter-modality 

interactions without additional complexity. 

The model's technical specifications are noteworthy, featuring a configuration known as ViT-

B/32, with a hidden size of 768, a depth of 12 layers, a patch size of 32, an MLP size of 3072, and 

12 attention heads. Pre-trained on ImageNet, ViLT's design facilitates a substantial reduction in 

computational load while maintaining high performance in VQA benchmarks. 

Training objectives for ViLT include Image Text Matching (ITM), where the model discerns the 

relevance of a given image to the accompanying text, and Masked Language Modeling (MLM), 

predicting masked words within a textual input by considering its contextual relationship with 

the visual data. A novel Word Patch Alignment (WPA) technique also enhances the model's 

capability to align textual tokens with corresponding image patches, utilizing optimal transport 

theory for improved correspondence measures. 

ViLT's approach to visual and textual embedding and its modality interaction offers insightful 

perspectives for VQA tasks. Its design principles and training strategies present valuable 

considerations for future research in multimodal learning frameworks, underscoring the 

potential of transformer-based models to redefine benchmarks in VQA and related fields. 

 

3.3. Grad-CAM. 
This paper "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" 

presents a novel approach called Grad-CAM (Gradient-weighted Class Activation Mapping) for 

generating visual explanations from deep neural networks, with a particular focus on its 

application in Visual Question Answering (VQA) systems. In VQA tasks, understanding why a 

model makes a certain prediction is crucial for transparency and interpretability. Grad-CAM 

addresses this need by providing a heatmap that highlights the regions in an input image that 

contribute most to the model's decision. This heatmap can be superimposed onto the image, 

making it easier for humans to interpret the model's reasoning. [3] 

Grad-CAM employs gradient-based localization, using gradients from the final convolutional layer 

to identify crucial image regions for specific predictions, establishing a direct link between model 

outputs and influential visual areas. It further aggregates these gradients through global average 

pooling to align them spatially with the input image, preserving the interpretability of1 the 

explanation. Notably, Grad-CAM is versatile, as it can be applied to various neural network 

architectures without model-specific modifications, enhancing interpretability in Visual Question 

Answering (VQA) by offering human-understandable explanations by overlaying localization 

heatmaps on images, revealing which image regions influenced the model's responses to 

questions. 



   
 

7 | P a g e  
 

3.4. Bottom-Up and Top-Down Attention  
This paper "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question 

Answering" addresses the field of Visual Question Answering (VQA) by introducing an attention 

mechanism that combines both bottom-up and top-down approaches to improve model 

performance in generating answers to questions based on images. In VQA tasks, understanding 

and reasoning about images are crucial for providing accurate answers to questions. The paper 

proposes a novel approach that leverages both bottom-up and top-down attention mechanisms. 

[4]  

Bottom-Up Attention analyzes the image to identify important regions and objects, creating 

image features with spatial information to emphasize relevant image parts. In contrast, Top-

Down Attention processes the question to identify crucial words and dynamically adjusts 

attention on image features based on the question's semantics, enabling the model to adapt its 

focus in response to the question's content, enhancing its reasoning ability. 

The key contributions are threefold. Firstly, it enhances model understanding by combining 

bottom-up and top-down attention mechanisms, enabling the model to better grasp the 

relationship between image content and the posed question, resulting in improved answer 

accuracy. Secondly, the paper promotes effective reasoning by integrating visual information and 

question semantics, enhancing the model's ability to reason about images and provide more 

accurate answers across a wide range of questions. Lastly, the proposed approach is versatile, 

applicable to both image captioning and VQA tasks, highlighting its effectiveness across various 

domains within computer vision and natural language processing. 

 

 

 

 

 

 

 

 

 

 

 



   
 

8 | P a g e  
 

4. Dataset 
 

In the development of our "Visual Question Answering Web-Application for Scene 

Understanding," the utilization of high-quality and meticulously curated datasets is paramount 

to achieving accurate, robust, and dependable results. One such indispensable resource that we 

have harnessed for training, validation, and testing is the VQA 2.0 Dataset. The VQA 2.0 Dataset 

is a rich collection of annotated visual content, questions, and answers that plays a fundamental 

role in enabling our system to comprehend and respond to user-generated queries about images 

and videos. 

4.1. VQA 2.0 Dataset Overview: 
 

The VQA 2.0 Dataset comprises various essential components, including VQA Annotations, VQA 

Input Questions, VQA Input Images, and Complementary Pairs List. This comprehensive dataset 

has undergone meticulous post-processing, ensuring the highest data quality and consistency.  

Leveraging this dataset, our system will be trained and fine-tuned to provide users with precise, 

contextually relevant, and insightful answers to their queries, fostering a more intelligent and 

interactive user experience. 

The multi-modal VQA system demands the Several type of Dataset to Train, Validate and Test the 

System. Each type of dataset is explained in the following sections.  

 

4.2. VQA Annotations: 
 

Spelling Correction: The dataset undergoes a thorough spelling correction process, employing 

Bing Speller to rectify any typographical errors present in the question-and-answer strings. This 

step is critical to maintain data accuracy and consistency. 

Question Normalization: To ensure uniformity, questions are normalized, with the first character 

in uppercase and the last character always being a question mark. 

Answer Normalization: Answers are normalized, with all characters converted to lowercase. 

Periods are retained only as decimal points, and number words are translated into digits. Articles 

such as 'a,' 'an,' and 'the' are stripped to enhance data cleanliness and consistency. 

Apostrophe Addition: If a contraction is detected without an apostrophe, it is added to rectify 

contractions and ensure linguistic correctness (e.g., converting "dont" to "don't"). 

 



   
 

9 | P a g e  
 

The annotations are stored using the JSON file format. 

The annotations format has the following data structure: 
{ 
"info" : info, 
"data_type": str, 
"data_subtype": str, 
"annotations" : [annotation], 
"license" : license 
} 

 
data_type: source of the images (mscoco or abstract_v002). 
data_subtype: type of data subtype (e.g. train2014/val2014/test2015 for mscoco). 
question_type: type of the question determined by the first few words of the question.  
answer_type: type of the answer. Currently, "yes/no", "number", and "other". 
multiple_choice_answer: most frequent ground-truth answer. 
answer_confidence: subject's confidence in answering the question.  

4.3. VQA Input Questions: 
 

This component of the dataset includes a diverse array of natural language questions related to 

the visual content. Questions vary in complexity, context, and focus, providing a wide spectrum 

of queries that users may pose to the application. 

Input Questions Format 

The questions are stored using the JSON file format. 

 

The questions format has the following data structure: 
{ 
"info" : info, 
"task_type" : str, 
"data_type": str, 
"data_subtype": str, 
"questions" : [question], 
"license" : license 
} 

 
task_type: type of annotations in the JSON file (OpenEnded). 
data_type: source of the images (mscoco or abstract_v002). 
data_subtype: type of data subtype (e.g. train2014/val2014/test2015 for mscoco). 

 

 



   
 

10 | P a g e  
 

4.4. VQA Input Images from COCO: 
 

The COCO dataset is known for its high quality and large scale, making it a valuable resource for 

training and evaluating machine learning models, particularly in tasks related to object 

recognition and scene understanding. 

The VQA Input Images from COCO are a rich repository of visual content, comprising images and 

potentially videos. These images encompass a range of scenes, objects, and activities, offering a 

robust visual context for users to query. 

• Training images: 82,783 images 

• Validation images: 40,504 images 

• Testing images: 81,434 images 

 

4.5. Training, Validation, Test partitioning of Dataset 
 

The Dataset are Divided into Training, Validation and Testing. The purpose of each partition of 

dataset is explained below. 

Training Dataset: 

• Model Learning: The training dataset is used to train the machine learning model. It 

provides examples of input data and their corresponding known output, allowing the 

model to learn the underlying patterns and relationships in the data. 

• Parameter Tuning: During training, the model's parameters or weights are adjusted to 

minimize the difference between its predictions and the actual target values in the 

training data. 

• Feature Extraction: The model learns to extract relevant features from the input data, 

helping it make accurate predictions. 

Validation Dataset: 

• Hyperparameter Tuning: The validation dataset is used to fine-tune hyperparameters, 

such as learning rates or regularization terms. It helps optimize the model's 

performance without overfitting to the training data. 

• Model Selection: Multiple models or variations of the same model can be compared 

using the validation dataset to determine which one performs the best. 



   
 

11 | P a g e  
 

• Early Stopping: Validation data is used to monitor the model's performance during 

training. If performance on the validation data starts to degrade, early stopping can be 

employed to prevent overfitting. 

Testing Dataset: 

• Performance Assessment: The testing dataset serves as an independent dataset that 

the model has never seen during training or validation. It's used to evaluate the 

model's performance in a real-world, generalization scenario. 

• Generalization Assessment: Testing helps ensure that the model hasn't overfit the 

training data and that it can make accurate predictions on new, unseen examples. 

• Benchmarking: The testing dataset allows for benchmarking the model's performance, 

making it possible to compare different models or algorithms on a level playing field. 

 

4.6. Python script to download and extract the Dataset. 
 

Training and Validation of the model cannot be done in the local computer due to the Size of 

Dataset and the time taken to train on the local GPU. 

Therefore, we used Colab-Pro computing space and its terminal to run training and validation of 

VQA Model1. uploading the huge dataset from local PC to colab is highly expensive in-terms of 

time taken and loosing computing units for the GPU runtime.  

Instead having a Dataset downloader and Extractor Script would much cost-effective and time 

effective. 

Script:  https://github.com/AI6002/capstone-project-

team2/tree/ac2579c3dda0f5fe44779832bbdcee0fe386a344/Datasets 

 

Figure 2 - VQA2.0 Dataset download structure 

https://github.com/AI6002/capstone-project-team2/tree/ac2579c3dda0f5fe44779832bbdcee0fe386a344/Datasets
https://github.com/AI6002/capstone-project-team2/tree/ac2579c3dda0f5fe44779832bbdcee0fe386a344/Datasets


   
 

12 | P a g e  
 

5. VQA Models 
 

5.1. VQA is a Multimodal Task. 
 

 

Figure 3 - VQA Multimodal approach diagram 

Computer Vision 

• Image Preprocessing 

• Feature Extraction: Using CNNs like ResNet/VGGNet/EfficientNet/DenseNet 

• Object Detection and Recognition: labels objects, detect attributes and relationships. 

• Scene Understanding: interprets the overall scene, actions or context.  

• Semantic Feature Encoding: into semantic vector space to Integrate with Lang Model 

 

Natural Language Processing 

• Preprocessing: tokenization, cleaning. 

• Text Embedding: Convert the processed text into numerical vectors or embeddings. 

• Language Understanding: of semantic and syntactic structure using either legacy 

RNN/GRU/LSTM/CNN or SOTA Transformer Models BERT, GPT Series, Google's T5 etc. 

• Contextual and Commonsense Reasoning:  not directly present in the image/ question. 

 



   
 

13 | P a g e  
 

Integration and Answer Generation 

• Apply Attention: aligning relevant parts of the image with key elements of the text 

embeddings. 

• Fusion of Modalities: Combine the attention-weighted image features and text 

embeddings. 

• Answer Generation: using the integrated, attention-focused features 

 

5.2. LSTM, VGG19 Based Stacked Attention Model 
 

 

Figure 4 - Stacked Attention Model CVPR 2019 

• Paper CVPR May 2017: "Making the V in VQA Matter: Elevating the Role of Image 

Understanding in Visual Question Answering"   

• Image feature extraction & Obj Detection: VGG19-CNN 

• NLP Model for Text Embedding: Long Short-Term Memory (LSTM) 

• Attention and Answer Generation: Hierarchical Co-attention (HieCoAtt). Its co-attends 

to both the image and the question.  

Above Diagram shows an Architecture of our first approach for the VQA Model. Where We 

treat visual question answering task as a classification problem. Given an image I and a question 

q in the form of natural language we want to estimate the most likely answer â from a fixed set 

of answers based on the content of the image.  

 

 

https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1612.00837


   
 

14 | P a g e  
 

Approach: 

A. Image Embedding 

We plan to use a pretrained convolutional neural network (CNN) model based on residual 

network architecture (ResNet) to compute a higher dimensional tensor representation of the 

input image.  

B. Question embedding 

The User question is tokenized and encoded into word embeddings. The embeddings are then 

fed to a long short-term memory (LSTM). The final state of the LSTM to represent the question. 

C. Stacked Attention 

The concatenated image features and the final state of LSTMs are then used to compute multiple 

attention distributions over image features. 

D. Output Classifier  

Finally, Concatenate the image glimpses along with the LSTM state and apply nonlinearities to 

produce probabilities over answer classes. 

 

5.3. ViLT: Vision-and-Language Transformer 
 

 

Figure 5 - Vision and Language Transformer ICML 2021 

• ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or 

Region Supervision" 

• Visual Embedding: Patch Projection method introduced by ViT (Vision Transformer) 

https://arxiv.org/abs/2102.03334
https://arxiv.org/abs/2102.03334


   
 

15 | P a g e  
 

• Textual Embedding: Tokenizer from pre-trained BERT (Bidirectional Encoder 

Representations from Transformers) 

• Modality Interaction: single-stream approach, self-attention in Transformer Encoder 

 

Technical Specifications 

• The model uses weights from ViT-B/32 pre-trained on ImageNet. 

• Hidden size (H): 768 

• Layer depth (D): 12 

• Patch size (P): 32 

• MLP size: 3072 

• Number of attention heads: 12. 

 

Training Objectives and Techniques 

Image Text Matching (ITM): 

• This objective involves replacing the aligned image with a different image with a 

probability of 0.5.  

Word Patch Alignment (WPA): 

• Inspired by the word region alignment objective, WPA computes the alignment 

score between textual and visual subsets. 

Masked Language Modeling (MLM): 

• The model predicts the ground truth labels of masked text tokens from its 

contextualized vector.  

Whole Word Masking: 

• This technique involves masking all consecutive subword tokens that compose a 

whole word, hypothesized to be particularly crucial for VLP to utilize information 

from the other modality effectively. 

Image Augmentation: 

• ViLT employs RandAugment for image augmentation during fine-tuning. 

 



   
 

16 | P a g e  
 

5.4. Gtp-4v Model  
 

• GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided 

by the user. 

• Incorporating additional modalities (such as image inputs) into large language models (LLMs) 

is a key frontier in artificial intelligence research and development. 

• The largest language models developed by OpenAI, featuring approximately 175 billion 

parameters.  

• Paper: https://cdn.openai.com/papers/GPTV_System_Card.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://cdn.openai.com/papers/GPTV_System_Card.pdf


   
 

17 | P a g e  
 

6. Front End User Interface  
 

6.1. USER Interface Operation sequence. 
 

 

Figure 6 - User Interface Operation Sequence 

 

 

6.2. login Page. 
The Login VQA page is a crucial component of the Visual Question Answering (VQA) Chat-App. 

This page serves as the entry point for registered users to access the application's features. This 

Login VQA page aims to provide a user-friendly, secure, and intuitive login experience for users 

accessing the VQA Chat-App, emphasizing simplicity and functionality in the login process.  

• Users access the Login VQA page by navigating to the application's login URL. 

• The page structure is designed using HTML and Bootstrap classes. 

• It consists of a responsive layout with a card-based user interface, organized into sections 

(header, form, footer). 

• Users enter their login credentials (username and password) into the form fields 

provided. 

• Input fields are mandatory (required attribute) for data submission. Upon completion of 

entering credentials, users click the 'Login' button to submit the form. 

• The form data is sent to the '/login' endpoint using the POST method for server-side 

processing. Flask handles the form submission, validating and processing the entered 

credentials.  

• If the credentials are valid, the user is redirected to the application's home page. In case 

of invalid credentials, error messages are flashed (displayed) using Flask's flash message 

system. 



   
 

18 | P a g e  
 

• If login errors occur (e.g., incorrect credentials), error messages are displayed in an alert 

at the top of the card body. 

• Users without an account are prompted to sign up via a hyperlink that redirects them to 

the signup page using route. 

 
Figure 7 - Frontend page look of login page 

 

6.3. Register Page. 
User Registration facilitates the process for new users to join the application by creating an 

account. Registering is a fundamental step for users to access the functionalities and features 

provided by the VQA application. 

• HTML and Bootstrap classes are utilized to create a responsive layout. 

• Users fill out the registration form fields, including username, email address, password, 

and password confirmation. 

• All form fields are mandatory (required attribute) to ensure complete data submission. 

• Users click the 'Sign Up' button to submit the registration form, which uses the POST 

method to send data to the '/signup' endpoint for processing. 

• Flask handles the form submission, processing the provided user data for registration 

purposes. 

• Upon successful registration, the user is redirected to the login page to access the 

application. 

• If registration errors occur (e.g., invalid input, existing username or email), error messages 

are displayed in an alert at the top of the card body.  

• Users who are already registered can navigate to the login page. 



   
 

19 | P a g e  
 

 
Figure 8 Frontend page look of User Registration Page. 

6.4. Home Page. 
This page essentially serves as the main interaction space for users to communicate with the VQA 

system. It enables users to input queries, upload images, switch between models, and view 

ongoing conversations, fostering a user-friendly environment for interaction and query 

processing within the VQA Chat-App. Some of the features included in the page are given below: 

-  

a. Profile and Model Selection: 

• It displays user profile information like username. 

• It provides an option to switch between different models (GPT –04 and VLIT) via a 

toggle switch. 

• It includes icons for additional functionalities like notifications and a dropdown 

menu. 

b. Image Upload Section: 

• It allows users to upload images either by selecting them or capturing them through 

the camera. 

• It provides guidance on using the application, highlighting the purpose of the VQA 

models available. 



   
 

20 | P a g e  
 

 
Figure 9: - Capturing image using the webcam. 

 

Figure 10: - Demo After uploading the picture.. 

 



   
 

21 | P a g e  
 

c. Message Display and Input: 

• Shows the conversation between the user and the VQA application in the 

'msg_section'. 

• Offers a text input form for users to type their questions to the VQA application. 

• Includes a 'Submit' button to send the entered question for processing. 

 

 
Figure 11: - Working of VQA Model and message display. 

 

d. Additional Functionalities: 

•  'Clear Chat' button is present at the bottom to reset the conversation. 



   
 

22 | P a g e  
 

 
Figure 92 - Frontend page view of Homepage 

6.5. User Accuracy Page. 
 

The 'User Accuracy' page within the VQA Chat-App presents a comprehensive overview of user 

sentiments and engagement. At its core, the page is designed to offer a visual representation of 

user reactions through a pie chart, prominently displayed in the 'chart-container.' This chart, 

powered by the Chart.js library, dynamically illustrates the distribution between positive and 

negative reactions by leveraging Flask variables, specifically likes_count and dislikes_count, to 

populate the chart data. 

Complementing the visual representation, the page includes an 'Overall Reactions' section 

encapsulated in a styled 'reaction-box,' delivering concise statistics on user sentiment. Here, 

users can quickly grasp the count and percentage of positive ('likes') and negative ('dislikes') 

reactions, aiding in a swift understanding of the overall user sentiment towards the application's 

content. 



   
 

23 | P a g e  
 

The page functionality is orchestrated through additional scripts, importing the Chart.js library 

and defining a JavaScript function named renderPieChart. This function intelligently renders the 

pie chart by accessing and utilizing data fetched from the Flask backend, ensuring a dynamic and 

accurate depiction of user reactions. By amalgamating these elements, the 'User Accuracy' page 

provides an insightful snapshot of user sentiments, facilitating a deeper understanding of user 

engagement and content reception within the VQA Chat-App. 

 
Figure 103 - Frontend page view of User Accuracy page 

 

 

6.6. Model Accuracy Page. 
 

The distinction between the 'Model Accuracy' and 'User Accuracy' pages lies in their respective 

scopes and focuses within the VQA Chat-App. The 'Model Accuracy' page primarily concentrates 

on assessing the overall performance and reception of the application's model across the entire 

user base. It derives insights by aggregating reactions—such as 'likes' and 'dislikes'—across all 

users, providing a holistic view of how the model is perceived collectively. This evaluation is often 

visually represented, typically through pie charts, showcasing the distribution of positive and 

negative sentiments derived from user reactions.  

 



   
 

24 | P a g e  
 

In contrast, the 'User Accuracy' page delves into individual users' interactions and engagements 

within the app. It analyzes personalized reactions and preferences, offering insights into specific 

users' content perceptions and engagement patterns. This page tailors its data representation to 

depict an individual's 'likes' and 'dislikes,' offering a more personalized view of user satisfaction 

and content interaction. In essence, while 'Model Accuracy' assesses the model's general 

reception among all users, 'User Accuracy' zooms in to understand individual user preferences 

and engagement levels within the application. 

 

 
Figure 14- Frontend page view of User Accuracy page 

 

 

 

 

 

 

 



   
 

25 | P a g e  
 

7. Back-End: Flask Web Application. 
 

The back end of our web application will be supported by Flask that is a small python web 

framework that allows us to use multiple tools and features making the development of the web 

application easier and efficiently. This combination of features makes it easier for developers to 

build a web application faster by just having a single python file. Flask is also extensible and 

doesn’t force a particular directory structure or require complicated boilerplate code before 

getting started. Flask uses the Jinja template engine to dynamically construct HTML pages with 

Python concepts like variables, loops, and lists. On the other hand, there are some markup formats 

that had allow our project to perform a returned to user via HTTP request. These templates will 

be used as part of this project. 

For the efficiency of our project, we will create Flask web application file, that will be composed 

of HTML, CSS and JavaScript codes that will help achieve and implement our VQA interface. 

Another important aspect in our back end is the implementation of a Web Server Gateway 

Interface also known as WSGI, this one is the standard that specifies the communication standards 

between our web server and a client application. PEP333 contains the specifics of these 

requirements. These are the advantages that the WSGI bring to our Flask back end wed 

application: 

• Flexibility in the application's components. 

• Interoperability across Python frameworks. 

• Scalability of the application as the number of users grows. 

• Efficiency in terms of development speed. 

The main goal for the back-end web application is to provide a strong back bone structure for 

Vision Question Answer user interface in a way multiple users can have an enjoyable and efficient 

while interacting with our VQA model. 

7.1. Back-End Architecture 
The back-end architecture of our VQA web application is one of the most important aspects to 

secure the functionality of our model. Our back-end endpoints perform all the operations 

connecting with the Database, authentication, searching etc. For this purpose, we have 

stablished several blueprints for our Flask to help our structure by grouping several 

functionalities into more manageable components. 

The Flask Blueprint is split in such a way that the code is divided into different modules. In this 

section, we provide the architect with the previous application to make Blueprints that 

encapsulate related functionality. In this layout, we provide the most relevant five Flask 

Blueprints in our project: 

▪ API Blueprint to enable external systems to search and retrieve product information 



   
 

26 | P a g e  
 

Authentication Blueprint to enable users to log in and recover their password. 

▪ Cart Blueprint for cart and checkout functionality. 

▪ General Blueprint for the homepage. 

▪ Products Blueprint for searching and viewing products. 

This structure has made it easier for us to find the code and resources related to a given 

functionality. 

7.1.1. Flask Blueprint  

The development of the blueprint for our web application encapsulates functionality, such as 

views, templates, and other resources. To get a taste for how a Flask Blueprint would work, 

you can refactor the previous application by moving the index view into a Flask Blueprint. To 

do so, you have to create a Flask Blueprint that contains the index view and then use it in the 

application. Bellow we will provide an illustration of our web application structure layout: 

 

Figure 15- VQA Web application structure layout 

Here is the following description of the most relevant files from the structure: 

• main.py: 

Role: Entry point of the Flask application. 

Scaling: Maintain for application-wide initializations. Rarely modified. 

• /app/__init__.py: 



   
 

27 | P a g e  
 

Role: Initializes the Flask app and binds components like routes, database, and extensions. 

Scaling: Import and register new modules or Blueprints here. 

• /app/models.py 

Role: Contains database models for SQLAlchemy. 

Scaling: Define new or update existing models as data requirements evolve. 

• /app/routes.py 

Role: Houses route definitions and view functions. 

Scaling: Add new routes for additional pages and features. Consider splitting into multiple files 

or using Blueprints for organization. 

• /app/extensions.py 

Role: Initializes and configures Flask extensions. 

Scaling: Add new extensions or modify existing ones as needed. Keep focused on extensions. 

• config.py 

Role: Defines configuration settings for various environments. 

Scaling: Update or add new configurations for new features requiring environment-specific 

settings. 

While developing a project in Flask it is important to say that it does not enforce any particular 

project layout. The layout of this project is structured with the purpose of an efficient Vision 

Question Answer development. 

Also, during the development of this project we made sure that only one has a file for the 

application logic. This is to avoid ending up with a very large app.py that mixes code that’s 

nearly unrelated. This can make it hard to navigate and maintain the script. 

7.1.2. HTML Templates 

As a view renders a template in Flask, the template file is searched in all directories registered 

in the application's template search path. This path is set to ["/templates"] by default, thus 

templates are only searched for in the /templates directory within the application's root 

directory. Once the template_folder parameter is given while creating a Blueprint, the 

Blueprint's templates folder is added to the application's template search path when the Flask 

Blueprint is registered.  

 

 



   
 

28 | P a g e  
 

Here there is an illustration of the html templates in our web application: 

 

Figure 16- Integration of html templates in our web application 

 

The html templates in our work are base.html, home.html, login.html, register.html, 

about_us.html and others.  

6.1.3 Dependencies 

For the development of this project there are some crucial dependencies that need to be 

installed. There are 2 main different dependencies to be installed and should not conflict. These 

are the following: 

Dependencies for Flask: 

− flask: conda install -c anaconda flask. 

− flask-login: conda install -c conda-forge flask-login. 

− flask_sqlalchemy: conda install -c conda-forge flask-sqlalchemy. 

− flask_cors: conda install -c conda-forge flask_cors. 

− jinja2: conda install -c anaconda jinja2. 

− bcryp: conda install -c anaconda bcryp. 

Dependencies for VQA: 



   
 

29 | P a g e  
 

− pytorch torchvision torchaudio: conda install pytorch torchvision torchaudio pytorch-

cuda=12.1 -c pytorch -c nvidia. 

− transformers: conda install -c huggingface transformers. 

− PIL: conda install -c anaconda pillow. 

− numpy: conda install numpy. 

Another point is to create a different or separate environment to develop this project, since it 

will conflict the packages and the dependencies. The Virtual environments are independent 

groups of Python libraries, one for each project. Packages installed for one project will not affect 

other projects or the operating system’s packages. To Create an environment the following step. 

First, is to create a project folder and a .venv folder within: 

For macOS/Linux: 

− $ mkdir myproject 

− $ cd myproject 

− $ python3 -m venv .venv 

For Windows: 

− mkdir myproject 

− cd myproject 

− py -3 -m venv .venv 

To conclude in this section, we have provided all the dependencies that need to be installed 

with the specific requirement to follow depending on the type of operation system that will be 

used. All of them are easy to install but it is important the installed them based on the order 

mentioned below. 

 

7.2. Database Integration 
 

The selection of our database integration will be SQLite for the User interface web application. 

We decided to use SQLite not only because of her popularity but also simple-to-use relational 

database system. It has numerous advantages over other relational databases. At the same 

time is easy to install, create the tables and structure priorities. 

This data integration will be based on SQLAlchemy in the back end. This will be used to add 

database capability to a Flask program. The SQLAlchemy is a Python SQL toolkit and object 

relational mapper (ORM) that allows Python to interface with your preferred SQL database 

system, such as MySQL, PostgreSQL, SQLite, and others. An ORM is a program that transforms 

data across incompatible systems, for instance the object structure in Python and table 



   
 

30 | P a g e  
 

structure in a SQL database. The SQLAlchemy is essentially a connection between Python and 

an SQL database. 

Although SQLAlchemy is not required to connect with a SQLite database, we chose to utilize it 

since it provides you with a skill set that can be applied to any SQL database system in the 

future. 

Python and a number of different SQL database systems can be interfaced with by SQLAlchemy 

some of these systems require the installation of an extra module or library. Since Python 3.x 

comes with the sqlite3 module, SQLite doesn't need any additional modules. 

The implementation of our database in our back end is show below: 

  

Figure 17 - Illustration of the SQLAlchemy  integration in the Back end 

 

In our model.py file we integrated the different classes in the database. The user will compose 

of an ID number that will be attached every user once the registration is completed. When the 

registration is completed, the information will be stored in the database such as username, 

email and password.   

Another important class is Reaction, this one provided code is to model and manage user 

reactions (like 'like' or 'dislike') to messages or posts within an application based on the 

database information. Below we can see an explanation on the structure and the information. 

Reaction Class: 

• Inherits from db.Model. 

• Attributes: id, user_id, message_id, reaction_type. 

• Unique id (primary key). 

• user_id links to the User model (Foreign Key). 

• message_id and reaction_type (like/dislike). 

• Relationship with User Model: 
 

In addition, when running the MySQL database locally, a socket string has been included. 

This string will be very different on MacOS and Windows. 



   
 

31 | P a g e  
 

8. Cloud Deployment  
 

Below, we provide an illustration of our back-end architecture and the way it interacts with the 

cloud. The theme is to illustrate how the client-side interfaces with a sophisticated backend 

system to deliver a VQA service, which is likely based on machine learning, as our VQA Model is 

integrated. The use of AWS EC2 helps to scalable and reliable cloud infrastructure for hosting the 

application. 

 

 

Figure 18 - Cloud Deployment Diagram 

  

The diagram is divided into two main sections, indicating different sides of the application: the 

User (Client Side) and the Cloud (AWS EC2). 

User-Client Side: This part shows mobile and desktop devices, suggesting that the application is 

accessible on various platforms. The devices display interface elements, hinting at a user-

friendly GUI for interacting with the VQA system. 

Cloud - AWS EC2: This section outlines the server-side components hosted on an Amazon Web 

Services (AWS) EC2 instance. It is further divided into layers, each with specific roles: 



   
 

32 | P a g e  
 

Web + Proxy Server (NGINX): NGINX is shown as the entry point for HTTP requests and responses. 

It acts as a reverse proxy, directing requests to the appropriate application server. 

WSGI Application Server (Gunicorn): This layer has Gunicorn, which is a Python WSGI HTTP 

server for UNIX. It's responsible for running Python web applications that adhere to the WSGI 

standard. It seems to be the middleware that communicates between NGINX and the Flask 

application. 

Flask Framework: Represented at the bottom of the cloud section, the Flask framework is 

depicted with its logo and internal components such as 'Route Handlers' and 'VQA Model'. This 

suggests the Flask application is structured to handle routing with specific logic for the VQA 

functionality. 

The arrows indicate the flow of HTTP requests and responses between the client and server, as 

well as the internal request/response cycle within the server-side infrastructure. 

 

8.1. Server Side 
1. Hardware 

• Instance Type: AWS EC2 t3.small. 

• Memory: 16 GB. 

• CPU: Capable of handling variable workloads with burstable performance. 

• Storage: Based on selected AWS EBS configuration. 

• Network: Integrated with AWS’s network infrastructure for internet access and 

scalability. 

2. Software 

• Operating System: Ubuntu. 

• Web Server: Nginx, serving as a reverse proxy. 

• Application Server: Gunicorn, a WSGI server for running Python applications. 

• Web Framework: Flask, for creating the web application. 

• Cloud Platform: AWS EC2 for virtual server infrastructure. 

3. Communication Protocol 

• HTTP/HTTPS: For handling web requests and responses. 

• TCP/IP: Foundation protocol for internet and intranet communication. 



   
 

33 | P a g e  
 

• DNS Protocol: For resolving the server's public DNS to its IP address. 

 

4. Interfacing 

• Nginx to Gunicorn: Internal request routing from Nginx to Gunicorn. 

• Gunicorn to Flask: Execution of web application logic in Flask via Gunicorn. 

 

8.2. Client Side 
 

1. Hardware 

• Devices: Varied (e.g., smartphones, tablets, laptops, desktops). 

• Specifications: Diverse in terms of CPU, memory, and storage, depending on the 

device. 

2. Software 

• Web Browser: Chrome, Firefox, Safari, etc., for accessing the web application. 

• Operating System: Various (Windows, macOS, Linux, iOS, Android). 

3. Communication Protocol 

• HTTP/HTTPS: For sending requests to and receiving responses from the server. 

• TCP/IP: Underlying protocol for data transmission over the internet. 

4. Interfacing 

• User to Web Browser: Direct interaction via graphical interface for accessing and 

interacting with the web application. 

• Web Browser to Server: Communication through HTTP/HTTPS requests and 

responses. 

 

 

 

 



   
 

34 | P a g e  
 

9. System Evaluation - Beta Testing 
 

User Feedback is integral to system evaluation as it provides invaluable insights into the 

performance, usability, and efficacy of the system. By gathering user feedback, system evaluators 

can gauge user satisfaction, identify issues, and assess the system's strengths and weaknesses. 

In this application, (VQA chat App), feedback of the user is gathered in binary format (either likes 

or dislikes). The detailed implementation is illustrated below: - 

9.1. User Feedback collection. 
 

In our application, user feedback is collected through reactions given to bot messages. Users in 

the app can provide feedback through simple reactions: either "liking" or "disliking" certain 

messages. Each interaction with the "like" or "dislike" button contributes to user feedback. When 

a user reacts (likes or dislikes) to a message, an entry is made in the database. Each reaction entry 

typically includes the user ID, the ID of the message/content reacted to, and the type of reaction 

(like or dislike).  

For user accuracy metrics, the system calculates the count and percentages of likes and dislikes 

for a particular user. This involves querying the database to count the number of likes and dislikes 

associated with a user or specific content ID. These metrics are then displayed, showing the user's 

activity and engagement based on their reactions. User accuracy is calculated based on the ratio 

of likes or dislikes over the total number of reactions. Feedback data, especially dislikes, could be 

used to improve the model, informing decisions about what users find less appealing or helpful. 

 

Figure 19 - Demonstration of UserAccuracy.html page 



   
 

35 | P a g e  
 

9.2. Overall Model Accuracy after Beta Testing 
 

• The system calculates the aggregate count of likes and dislikes across all users. This 

aggregation involves querying the database's Reaction table, specifically filtering to count 

the total number of likes and dislikes stored in the database. 

• The system calculates the total number of reactions by summing up the counts of likes 

and dislikes obtained in the previous step. 

• After computing the total number of reactions, the system calculates the percentage 

breakdown for both likes and dislikes. This calculation involves determining what 

proportion of the total reactions corresponds to likes and dislikes. 

• Overall ViLT Model Accuracy after Beta Testing: 

o 75.7% Positive feedback of total 161 feedback. 

o 24.76% Negative feedback of total 161 feedback. 

 

 

Figure 20- Overall Model Accuracy after Beta Testing 

 

 

 



   
 

36 | P a g e  
 

10. Repository Management 
 

10.1. Milestones 

 

Figure 21- Milestones for Capstone_project_team2 

 



   
 

37 | P a g e  
 

10.2. Issues Status 
 

Opened Issues: 

 

Closed Issues in Reverse Chronological order: 

 



   
 

38 | P a g e  
 

Closed Issues Cont.: 

 

 



   
 

39 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

40 | P a g e  
 

11. Project Timeline 
 

For the VQA Web-Application project, we have divided the work into the following categories. 

Which are essentially set as the milestones in GitHub and being worked on under each issue.  

Updated and tracked Timeline of the project:  

 

Figure 22 - Project Timeline 

 

 

 

 

 

 

 

 

 



   
 

41 | P a g e  
 

12.  References 
 

[1]  T. K. D. S.-S. D. B. D. P. Yash Goyal, "Making the V in VQA Matter: Elevating the Role of 

Image Understanding in Visual Question Answering," in CVPR, 2017.  

[2]  B. S. I. K. Wonjae Kim, "ViLT: Vision-and-Language Transformer Without Convolution or 

Region Supervision," in ICML , 2021.  

[3]  R. S. M. C. A. D. R. Ramprasaath, "Grad-CAM: Visual Explanations from Deep Networks," 

2019.  

[4]  X. H. C. B. D. T. M. J. Peter Anderson, "Bottom-Up and Top-Down Attention for Image 

Captioning and Visual Question Answerin," 2018.  

  

  

  

  

 

 


