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1. Problem Statement

In the Last few years, deep neural networks have had a significant influence on the disciplines of
computer vision and natural language processing. We can now create models that accurately
identify items in the photos. But our knowledge of pictures is still far below that of humans. When
we look at images as humans, we don't only observe the things; we also comprehend how they
interact and may infer their state and characteristics. VQA is particularly intriguing since it
enables us to comprehend what our models actually perceive.

Our Capstone focuses on Developing Visual Question Answering (VQA) Chat application based
on scene understanding, wherein the system must harness the synergy of computer vision,
natural language processing, and commonsense knowledge to accurately respond to user-
generated questions related to visual content.

Our proposed VQA system provides solution for Scene understanding for images that are
captured around our outdoor or Indoor surroundings.

1.1. Key Components and Objectives:

Three Major Challenges:

1. Visual Understanding: The system should have the capability to analyze and comprehend
the content of images and videos, extracting relevant information about objects, people,
actions, and spatial relationships.

2. Natural Language Processing: The application must be able to process and understand
natural language questions posed by users. This includes handling a variety of question
types, such as "What," "Where," "Why," and "How."

3. Commonsense Reasoning: The system should integrate a repository of commonsense
knowledge to enable it to answer questions that may not have explicit information in the
visual content. For instance, it should be able to infer answers to questions like “Why are
the men jumping?”, “What is the kid doing?”

Other System Design Challenges:

1. Multimodal Integration: The application must seamlessly fuse the understanding of
visual content and the interpretation of natural language questions to provide coherent
and contextually relevant answers.
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2. User Interaction: The user interface should be user-friendly, allowing users to upload
images or input URLs, pose questions in natural language, and receive timely and accurate
responses.

3. Accuracy and Efficiency: The system should strive to provide accurate answers in real-
time or with minimal delay. It should handle a wide range of questions and images,
ensuring high precision and recall.

4. User Feedback and Learning: Incorporate mechanisms for users to provide feedback on
the system's responses, enabling iterative improvement and learning from user
interactions.

The successful development of this Visual Question Answering web application, combining vision,
language, and commonsense knowledge, will not only enhance our ability to understand and
interact with visual content but also have practical applications in fields like education,
accessibility, content retrieval, and more.

1.2. Potential Applications

Summary:

A single universal system with one VQA model wouldn’t be able to handle all the potential
applications and scenarios listed in this section.

Our proposed VQA system provides a solution for Scene understanding for images that are
captured around our outdoor or Indoor surroundings.

But the followings Listed potential applications would require model changes, different training
Dataset, different fine tuning and validation methodologies based on the application Criteria,
Field of Application and Level of scene understanding and Language understanding demanded.

A. Educational Assistance:

This VQA system can be used to create interactive educational content. Teachers and students
can upload images or videos related to a particular topic or concept, and students can ask
guestions about the content. The system will provide informative answers, helping students
better understand the material. It can also be used in e-learning platforms for self-paced learning,
making educational resources more engaging and effective.

B. Accessibility Support for the Visually Impaired:

Visually impaired individuals can use this system to gain a deeper understanding of their
surroundings. They can take a picture with a smartphone, ask questions about it (e.g., "What's in
the picture to my left?"), and receive spoken answers, enabling them to navigate their
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environment and interact with visual content in a meaningful way. This promotes greater
independence and inclusion for the visually impaired community.

C. Content-Based Image and Video Search:

Instead of relying on metadata or manual annotations, a VQA system can be used to search for
images or videos based on their content. Users can describe what they are looking for in natural
language (e.g., "Find images of a red sunset over a beach with palm trees") and get results that
closely match their descriptions. This simplifies content retrieval in image and video databases.

D. Virtual Assistants and Chatbots:

Integrating VQA into virtual assistants or chatbots can enhance their ability to assist users with
visual and context-dependent inquiries. For instance, a virtual assistant could help users plan a
trip by analyzing and answering questions about travel photos, weather, landmarks, and more,
all through a conversational interface.

E. Retail and E-commerce:

E-commerce websites can employ VQA to improve the shopping experience. Users can upload a
picture of an item they're interested in, and the system can answer questions like "Where can |
buy this?" or "Are there any discounts available?" This simplifies product discovery and enhances
the customer's shopping journey.

F. Healthcare Diagnosis and Training:

In the healthcare sector, a VQA system can aid in diagnosing medical conditions from medical
imagery (e.g., X-rays, MRl scans) by answering questions like "What abnormalities are present in
this X-ray?" Additionally, it can be used in training medical professionals by providing insights
into medical images and procedures, improving medical education.

G. Content Moderation and Reporting:

On social media and content-sharing platforms, a VQA system can assist in content moderation.
It can identify and report inappropriate or harmful content by analyzing images and answering
questions like "Is this content safe for all audiences?" This helps maintain a safer online
environment.

H. Tourism and Travel Planning:

Travelers can use the VQA system to plan their trips. They can upload images of destinations or
landmarks and ask questions like "What are the must-visit places in this city?" The system can
provide recommendations based on visual input and contextual questions.
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2. Cloud Deployed VOQA Web-App

Cloud URL: http://ec2-18-219-100-175.us-east-2.compute.amazonaws.com

Shrinked URL: https://tinyurl.com/vgat?2

* use Mobile or laptop

Create a New Account using sign-up

* Login with username(not email!) and password.
* Select an Image from Gallery or PC or Camera

* Submit the Image, Wait for Response..

* Ask a Question on image, Wait for Response!

+ Provide Feedback!

VISUAL QUESTION ANSWERING

Select-Img or Capture-Img, SUBMIT, Then Ask visual-based Questions on
the image!

MODEL SEL: Switch at top

VAiLT Model: Visicn—and-

Trained on

GPT-4V Model :

P Select-Img | B3 Capture-img Baaraubmit

Figure 1 - VQA Chat app guide notes
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3. Brief-Summary of Relevant Works Referred.

We referred to some of the top papers from the journal i.e., Conference on Computer Vision and
Pattern Recognition (CVPR) and find out state of art techniques in the field of VQA. The relevant
works and some takeaways from the papers are described below: -

3.1. Making the Vin VQA Matter

The VQA model referenced demonstrates an integrative approach combining convolutional
neural networks (CNNs) for visual feature extraction and Long Short-Term Memory (LSTM)
networks for processing sequential text data. The model architecture involves a hierarchical
processing pipeline where image features extracted via a CNN are normalized and then combined
with text features from a 2-layer LSTM through point-wise multiplication. This joint
representation is then condensed through successive fully-connected layers, culminating in a
softmax layer that outputs a probability distribution over potential answers. [1]

Performance logs indicate that the model is trained over 30 epochs, showing a consistent
decrease in training loss and a gradual increase in accuracy for both experiments (Expl and Exp2),
evidencing the model's learning and improvement. Moreover, the validation loss remains
relatively stable across epochs, suggesting robust generalization capabilities. The related works
section would emphasize the model's proficiency in learning representations and highlight its
steady progress in training as reflected in the training logs, underscoring its relevance and
contribution to the field of Visual Question Answering.

3.2. Vision-and-Language Transformer.

Recent advancements in the domain of Visual Question Answering (VQA) have been epitomized
by the introduction of the Vision-and-Language Transformer (ViLT) model. This innovative model
represents a paradigm shift in multimodal learning, eschewing the computationally intensive
convolutional operations and region-specific annotations traditionally relied upon in VQA tasks.

[2]

VILT leverages a streamlined architecture that processes raw image patches and text tokens
through shallow embedding layers, analogous in computational simplicity. The central
component of ViLT is a transformer encoder which concurrently processes the sequences of text
and image patch embeddings. This single-stream approach contrasts with dual-stream
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methodologies, enabling a more parameter-efficient model that fosters robust inter-modality
interactions without additional complexity.

The model's technical specifications are noteworthy, featuring a configuration known as ViT-
B/32, with a hidden size of 768, a depth of 12 layers, a patch size of 32, an MLP size of 3072, and
12 attention heads. Pre-trained on ImageNet, ViLT's design facilitates a substantial reduction in
computational load while maintaining high performance in VQA benchmarks.

Training objectives for ViLT include Image Text Matching (ITM), where the model discerns the
relevance of a given image to the accompanying text, and Masked Language Modeling (MLM),
predicting masked words within a textual input by considering its contextual relationship with
the visual data. A novel Word Patch Alignment (WPA) technique also enhances the model's
capability to align textual tokens with corresponding image patches, utilizing optimal transport
theory for improved correspondence measures.

ViLT's approach to visual and textual embedding and its modality interaction offers insightful
perspectives for VQA tasks. Its design principles and training strategies present valuable
considerations for future research in multimodal learning frameworks, underscoring the
potential of transformer-based models to redefine benchmarks in VQA and related fields.

3.3. Grad-CAM.

This paper "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization"
presents a novel approach called Grad-CAM (Gradient-weighted Class Activation Mapping) for
generating visual explanations from deep neural networks, with a particular focus on its
application in Visual Question Answering (VQA) systems. In VQA tasks, understanding why a
model makes a certain prediction is crucial for transparency and interpretability. Grad-CAM
addresses this need by providing a heatmap that highlights the regions in an input image that
contribute most to the model's decision. This heatmap can be superimposed onto the image,
making it easier for humans to interpret the model's reasoning. [3]

Grad-CAM employs gradient-based localization, using gradients from the final convolutional layer
to identify crucial image regions for specific predictions, establishing a direct link between model
outputs and influential visual areas. It further aggregates these gradients through global average
pooling to align them spatially with the input image, preserving the interpretability ofl the
explanation. Notably, Grad-CAM is versatile, as it can be applied to various neural network
architectures without model-specific modifications, enhancing interpretability in Visual Question
Answering (VQA) by offering human-understandable explanations by overlaying localization
heatmaps on images, revealing which image regions influenced the model's responses to
questions.

6|Page



3.4. Bottom-Up and Top-Down Attention

This paper "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question
Answering" addresses the field of Visual Question Answering (VQA) by introducing an attention
mechanism that combines both bottom-up and top-down approaches to improve model
performance in generating answers to questions based on images. In VQA tasks, understanding
and reasoning about images are crucial for providing accurate answers to questions. The paper
proposes a novel approach that leverages both bottom-up and top-down attention mechanisms.
[4]

Bottom-Up Attention analyzes the image to identify important regions and objects, creating
image features with spatial information to emphasize relevant image parts. In contrast, Top-
Down Attention processes the question to identify crucial words and dynamically adjusts
attention on image features based on the question's semantics, enabling the model to adapt its
focus in response to the question's content, enhancing its reasoning ability.

The key contributions are threefold. Firstly, it enhances model understanding by combining
bottom-up and top-down attention mechanisms, enabling the model to better grasp the
relationship between image content and the posed question, resulting in improved answer
accuracy. Secondly, the paper promotes effective reasoning by integrating visual information and
guestion semantics, enhancing the model's ability to reason about images and provide more
accurate answers across a wide range of questions. Lastly, the proposed approach is versatile,
applicable to both image captioning and VQA tasks, highlighting its effectiveness across various
domains within computer vision and natural language processing.
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4, Dataset

In the development of our "Visual Question Answering Web-Application for Scene
Understanding," the utilization of high-quality and meticulously curated datasets is paramount
to achieving accurate, robust, and dependable results. One such indispensable resource that we
have harnessed for training, validation, and testing is the VQA 2.0 Dataset. The VQA 2.0 Dataset
is a rich collection of annotated visual content, questions, and answers that plays a fundamental
role in enabling our system to comprehend and respond to user-generated queries about images
and videos.

4.1. VOQA 2.0 Dataset Overview:

The VQA 2.0 Dataset comprises various essential components, including VQA Annotations, VQA
Input Questions, VQA Input Images, and Complementary Pairs List. This comprehensive dataset
has undergone meticulous post-processing, ensuring the highest data quality and consistency.

Leveraging this dataset, our system will be trained and fine-tuned to provide users with precise,
contextually relevant, and insightful answers to their queries, fostering a more intelligent and
interactive user experience.

The multi-modal VQA system demands the Several type of Dataset to Train, Validate and Test the
System. Each type of dataset is explained in the following sections.

4.2. VQA Annotations:

Spelling Correction: The dataset undergoes a thorough spelling correction process, employing
Bing Speller to rectify any typographical errors present in the question-and-answer strings. This
step is critical to maintain data accuracy and consistency.

Question Normalization: To ensure uniformity, questions are normalized, with the first character
in uppercase and the last character always being a question mark.

Answer Normalization: Answers are normalized, with all characters converted to lowercase.
Periods are retained only as decimal points, and number words are translated into digits. Articles
such as 'a,' 'an,' and 'the' are stripped to enhance data cleanliness and consistency.

Apostrophe Addition: If a contraction is detected without an apostrophe, it is added to rectify
contractions and ensure linguistic correctness (e.g., converting "dont" to "don't").
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The annotations are stored using the JSON file format.
The annotations format has the following data structure:

{

"info" : info,

"data_type": str,
"data_subtype": str,
"annotations"” : [annotation],
"license" : license

}

data_type: source of the images (mscoco or abstract_v002).

data_subtype: type of data subtype (e.g. train2014/val2014/test2015 for mscoco).
question_type: type of the question determined by the first few words of the question.
answer_type: type of the answer. Currently, "yes/no", "number", and "other".
multiple_choice_answer: most frequent ground-truth answer.
answer_confidence: subject's confidence in answering the question.

4.3. VQA Input Questions:

This component of the dataset includes a diverse array of natural language questions related to
the visual content. Questions vary in complexity, context, and focus, providing a wide spectrum
of queries that users may pose to the application.

Input Questions Format
The questions are stored using the JSON file format.

The questions format has the following data structure
{

"info" : info,

"task_type" : str,

"data_type": str,

"data_subtype": str,

"questions" : [question],

"license" : license

}

task_type: type of annotations in the JSON file (OpenEnded).
data_type: source of the images (mscoco or abstract_v002).
data_subtype: type of data subtype (e.g. train2014/val2014/test2015 for mscoco).
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4.4. VQA Input Images from COCO:

The COCO dataset is known for its high quality and large scale, making it a valuable resource for
training and evaluating machine learning models, particularly in tasks related to object
recognition and scene understanding.

The VQA Input Images from COCO are a rich repository of visual content, comprising images and
potentially videos. These images encompass a range of scenes, objects, and activities, offering a
robust visual context for users to query.

e Training images: 82,783 images
e Validation images: 40,504 images
e  Testing images: 81,434 images

4.5. Training, Validation, Test partitioning of Dataset

The Dataset are Divided into Training, Validation and Testing. The purpose of each partition of
dataset is explained below.

Training Dataset:

e  Model Learning: The training dataset is used to train the machine learning model. It
provides examples of input data and their corresponding known output, allowing the
model to learn the underlying patterns and relationships in the data.

e  Parameter Tuning: During training, the model's parameters or weights are adjusted to
minimize the difference between its predictions and the actual target values in the
training data.

e  Feature Extraction: The model learns to extract relevant features from the input data,
helping it make accurate predictions.

Validation Dataset:

e  Hyperparameter Tuning: The validation dataset is used to fine-tune hyperparameters,
such as learning rates or regularization terms. It helps optimize the model's
performance without overfitting to the training data.

e  Model Selection: Multiple models or variations of the same model can be compared
using the validation dataset to determine which one performs the best.
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e  Early Stopping: Validation data is used to monitor the model's performance during
training. If performance on the validation data starts to degrade, early stopping can be
employed to prevent overfitting.

Testing Dataset:

e Performance Assessment: The testing dataset serves as an independent dataset that
the model has never seen during training or validation. It's used to evaluate the
model's performance in a real-world, generalization scenario.

e  Generalization Assessment: Testing helps ensure that the model hasn't overfit the
training data and that it can make accurate predictions on new, unseen examples.

e  Benchmarking: The testing dataset allows for benchmarking the model's performance,
making it possible to compare different models or algorithms on a level playing field.

4.6. Python script to download and extract the Dataset.

Training and Validation of the model cannot be done in the local computer due to the Size of
Dataset and the time taken to train on the local GPU.

Therefore, we used Colab-Pro computing space and its terminal to run training and validation of
VQA Modell. uploading the huge dataset from local PC to colab is highly expensive in-terms of
time taken and loosing computing units for the GPU runtime.

Instead having a Dataset downloader and Extractor Script would much cost-effective and time
effective.

Script: https://github.com/Al6002/capstone-project-
team2/tree/ac2579c3dda0f5fe44779832bbdceeOfe386a344/Datasets

Directory and File Structure

-- datasests/
+-- images/
+-- test2@15/
+-- train2@1i4/
+-- val2ala/s
+-- Annotations/
+-- <annotations>.json
+-- Questions/
+-- <questions>.json

Figure 2 - VQA2.0 Dataset download structure
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5. VQA Models

5.1. VQA is a Multimodal Task.

Image Input

Combine the probabilities
attention-weighted over answer

image features and classes
text embeddings.

Visual Embedding Fusion of Modalities: E produce

Answer Generation
using attention-focused
features

Apply Attention to the

image from key elements
< > of Texual Embedding

| Question Input | \ Texual Embedding I

Figure 3 - VQA Multimodal approach diagram

Computer Vision

* Image Preprocessing

* Feature Extraction: Using CNNs like ResNet/VGGNet/EfficientNet/DenseNet

* Object Detection and Recognition: labels objects, detect attributes and relationships.
* Scene Understanding: interprets the overall scene, actions or context.

* Semantic Feature Encoding: into semantic vector space to Integrate with Lang Model

Natural Language Processing

* Preprocessing: tokenization, cleaning.
* Text Embedding: Convert the processed text into numerical vectors or embeddings.

* Language Understanding: of semantic and syntactic structure using either legacy
RNN/GRU/LSTM/CNN or SOTA Transformer Models BERT, GPT Series, Google's T5 etc.

* Contextual and Commonsense Reasoning: not directly present in the image/ question.
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Integration and Answer Generation

* Apply Attention: aligning relevant parts of the image with key elements of the text
embeddings.

* Fusion of Modalities: Combine the attention-weighted image features and text
embeddings.

* Answer Generation: using the integrated, attention-focused features

5.2. LSTM, VGG19 Based Stacked Attention Model

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

Convolution Layer Fully-Connected MLP
Pooling Layer  + Non-Linearity Pooling Layer =~ ”2”
>

1024 1000 1000

Fully-Connected

Convolution Layer
+ Non-Linearity

2X2X512 LSTM
" 1024

PO'P“,W'S_E Fully-Connected Softmax
multiplication

Fully-Connected

“How many horses are in this image?”
Figure 4 - Stacked Attention Model CVPR 2019

* Paper CVPR May 2017: "Making the V in VQA Matter: Elevating the Role of Image
Understanding in Visual Question Answering"

* Image feature extraction & Obj Detection: VGG19-CNN
* NLP Model for Text Embedding: Long Short-Term Memory (LSTM)

* Attention and Answer Generation: Hierarchical Co-attention (HieCoAtt). Its co-attends
to both the image and the question.

Above Diagram shows an Architecture of our first approach for the VQA Model. Where We
treat visual question answering task as a classification problem. Given an image I and a question
q in the form of natural language we want to estimate the most likely answer & from a fixed set
of answers based on the content of the image.
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Approach:
A. Image Embedding

We plan to use a pretrained convolutional neural network (CNN) model based on residual
network architecture (ResNet) to compute a higher dimensional tensor representation of the
input image.

B. Question embedding

The User question is tokenized and encoded into word embeddings. The embeddings are then
fed to a long short-term memory (LSTM). The final state of the LSTM to represent the question.

C. Stacked Attention

The concatenated image features and the final state of LSTMs are then used to compute multiple
attention distributions over image features.

D. Output Classifier

Finally, Concatenate the image glimpses along with the LSTM state and apply nonlinearities to
produce probabilities over answer classes.

5.3. VILT: Vision-and-Language Transformer

Image Text Matching Masked Language Medeliug ‘Word Patch Alignment
el (e belotie
ED )
[ | L[ =T | [ ] [

8@ Extra learnable [class] embedding

\Iodal -type embedding

|
dﬁdddddﬂddﬁﬂﬁﬂ =

Word Embedding Lmea] Pro_]ectlon of Flattened Patches

e
N w ﬁ i
a stone statue near an [MASK] "‘i‘“ﬂﬂ P a ﬁ '—.g .

Figure 5 - Vision and Language Transformer ICML 2021

Transformer Encoder

* |CML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or
Region Supervision"

* Visual Embedding: Patch Projection method introduced by ViT (Vision Transformer)
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https://arxiv.org/abs/2102.03334

* Textual Embedding: Tokenizer from pre-trained BERT (Bidirectional Encoder
Representations from Transformers)

* Modality Interaction: single-stream approach, self-attention in Transformer Encoder

Technical Specifications
* The model uses weights from ViT-B/32 pre-trained on ImageNet.
* Hidden size (H): 768
* Layer depth (D): 12
* Patch size (P): 32
* MLP size: 3072

*  Number of attention heads: 12.

Training Objectives and Techniques
Image Text Matching (ITM):

* This objective involves replacing the aligned image with a different image with a
probability of 0.5.

Word Patch Alignment (WPA):

* Inspired by the word region alignment objective, WPA computes the alignment
score between textual and visual subsets.

Masked Language Modeling (MLM):

* The model predicts the ground truth labels of masked text tokens from its
contextualized vector.

Whole Word Masking:

* This technique involves masking all consecutive subword tokens that compose a
whole word, hypothesized to be particularly crucial for VLP to utilize information
from the other modality effectively.

Image Augmentation:

* ViLT employs RandAugment for image augmentation during fine-tuning.
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5.4. Gtp-4v Model

e GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided
by the user.

e Incorporating additional modalities (such as image inputs) into large language models (LLMs)
is a key frontier in artificial intelligence research and development.

e The largest language models developed by OpenAl, featuring approximately 175 billion
parameters.

e Paper: https://cdn.openai.com/papers/GPTV_System Card.pdf

16 | Page


https://cdn.openai.com/papers/GPTV_System_Card.pdf

6. Front End User Interface

6.1. USER Interface Operation sequence.

Capture Image

Al Detects Objects in the Ask question. Get Answers. Enter Feedback
image and give prompt
message.

Upload a Picture

Figure 6 - User Interface Operation Sequence

6.2. login Page.

The Login VQA page is a crucial component of the Visual Question Answering (VQA) Chat-App.
This page serves as the entry point for registered users to access the application's features. This
Login VQA page aims to provide a user-friendly, secure, and intuitive login experience for users
accessing the VQA Chat-App, emphasizing simplicity and functionality in the login process.

e Users access the Login VQA page by navigating to the application's login URL.

e The page structure is designed using HTML and Bootstrap classes.

e [t consists of a responsive layout with a card-based user interface, organized into sections
(header, form, footer).

e Users enter their login credentials (username and password) into the form fields
provided.

e Input fields are mandatory (required attribute) for data submission. Upon completion of
entering credentials, users click the 'Login' button to submit the form.

e The form data is sent to the '/login' endpoint using the POST method for server-side
processing. Flask handles the form submission, validating and processing the entered
credentials.

e If the credentials are valid, the user is redirected to the application's home page. In case
of invalid credentials, error messages are flashed (displayed) using Flask's flash message
system.
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6.3.

If login errors occur (e.g., incorrect credentials), error messages are displayed in an alert
at the top of the card body.

Users without an account are prompted to sign up via a hyperlink that redirects them to
the signup page using route.

[*]
Login VQA Chat-App

Username

Enter username
Password

Password
Forgot Password?

Don't have an account? Sign up

Figure 7 - Frontend page look of login page

Register Page.

User Registration facilitates the process for new users to join the application by creating an
account. Registering is a fundamental step for users to access the functionalities and features
provided by the VQA application.

HTML and Bootstrap classes are utilized to create a responsive layout.

Users fill out the registration form fields, including username, email address, password,
and password confirmation.

All form fields are mandatory (required attribute) to ensure complete data submission.
Users click the 'Sign Up' button to submit the registration form, which uses the POST
method to send data to the '/signup' endpoint for processing.

Flask handles the form submission, processing the provided user data for registration
purposes.

Upon successful registration, the user is redirected to the login page to access the
application.

If registration errors occur (e.g., invalid input, existing username or email), error messages
are displayed in an alert at the top of the card body.

Users who are already registered can navigate to the login page.
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Username

Email address

Password

Confirm Password

Already a member? Login

Figure 8 Frontend page look of User Registration Page.

6.4. Home Page.

This page essentially serves as the main interaction space for users to communicate with the VQA
system. It enables users to input queries, upload images, switch between models, and view
ongoing conversations, fostering a user-friendly environment for interaction and query
processing within the VQA Chat-App. Some of the features included in the page are given below:

a. Profile and Model Selection:
e [t displays user profile information like username.
e It provides an option to switch between different models (GPT —04 and VLIT) via a
toggle switch.
e It includes icons for additional functionalities like notifications and a dropdown
menu.
b. Image Upload Section:
e [t allows users to upload images either by selecting them or capturing them through
the camera.
e |t provides guidance on using the application, highlighting the purpose of the VQA
models available.
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Capture User Image

Welcome Back!
user_t

I Y Select-Img [ @ Capture-img

f - { Image successfully submitted, ask anything about this image
it is man holding in hand?

‘ what color jacket is man wearing?
f gray |

what color jacket is man wearing?
W Clear Chat

Figure 10: - Demo After uploading the picture..
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c. Message Display and Input:
e Shows the conversation between the user and the VQA application in the
'msg_section'.
e Offers a text input form for users to type their questions to the VQA application.
¢ Includes a 'Submit' button to send the entered question for processing.

{ User
¥ " aayush

‘ B Select-Img | 0 Capture-Img ‘ 2 Submi |

5 * | Image successfully submitted, ask anything about this image \

| Which animals are there in the picture?
5 cat and dog ‘

I What are they doing? .‘
5 + | sitting ‘

W Clear Chat

Figure 11: - Working of VQA Model and message display.

d. Additional Functionalities:
e 'Clear Chat' button is present at the bottom to reset the conversation.
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VISUAL QUESTION ANSWERING

Select-Img or Capture-Img, SUBMIT, Then Ask visual-based Questions on the image!
MODEL SEL: Switch at top

ViLT Model: Vision-and-Languas

A Select-img | € Capture-img [N Submit

W Clear Chat

Figure 92 - Frontend page view of Homepage

6.5. User Accuracy Page.

The 'User Accuracy' page within the VQA Chat-App presents a comprehensive overview of user
sentiments and engagement. At its core, the page is designed to offer a visual representation of
user reactions through a pie chart, prominently displayed in the 'chart-container.' This chart,
powered by the Chart.js library, dynamically illustrates the distribution between positive and
negative reactions by leveraging Flask variables, specifically likes_count and dislikes_count, to
populate the chart data.

Complementing the visual representation, the page includes an 'Overall Reactions' section
encapsulated in a styled 'reaction-box,' delivering concise statistics on user sentiment. Here,
users can quickly grasp the count and percentage of positive ('likes') and negative ('dislikes')
reactions, aiding in a swift understanding of the overall user sentiment towards the application's
content.
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The page functionality is orchestrated through additional scripts, importing the Chart.js library
and defining a JavaScript function named renderPieChart. This function intelligently renders the
pie chart by accessing and utilizing data fetched from the Flask backend, ensuring a dynamic and
accurate depiction of user reactions. By amalgamating these elements, the 'User Accuracy' page
provides an insightful snapshot of user sentiments, facilitating a deeper understanding of user
engagement and content reception within the VQA Chat-App.

User Accuracy

Overall Reactions

Positive: 13 (81.25%)

Negative: 3 (18.75%)

Figure 103 - Frontend page view of User Accuracy page

6.6. Model Accuracy Page.

The distinction between the 'Model Accuracy' and 'User Accuracy' pages lies in their respective
scopes and focuses within the VQA Chat-App. The 'Model Accuracy' page primarily concentrates
on assessing the overall performance and reception of the application's model across the entire
user base. It derives insights by aggregating reactions—such as 'likes' and 'dislikes'—across all
users, providing a holistic view of how the model is perceived collectively. This evaluation is often
visually represented, typically through pie charts, showcasing the distribution of positive and
negative sentiments derived from user reactions.
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In contrast, the 'User Accuracy' page delves into individual users' interactions and engagements
within the app. It analyzes personalized reactions and preferences, offering insights into specific
users' content perceptions and engagement patterns. This page tailors its data representation to
depict an individual's 'likes' and 'dislikes," offering a more personalized view of user satisfaction
and content interaction. In essence, while 'Model Accuracy' assesses the model's general
reception among all users, 'User Accuracy' zooms in to understand individual user preferences
and engagement levels within the application.

Model Accuracy

Overall Reactions

Positive: 23 (79.31%)

Negative: 6 (20.69%)

Figure 14- Frontend page view of User Accuracy page
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7. Back-End: Flask Web Application.

The back end of our web application will be supported by Flask that is a small python web
framework that allows us to use multiple tools and features making the development of the web
application easier and efficiently. This combination of features makes it easier for developers to
build a web application faster by just having a single python file. Flask is also extensible and
doesn’t force a particular directory structure or require complicated boilerplate code before
getting started. Flask uses the Jinja template engine to dynamically construct HTML pages with
Python concepts like variables, loops, and lists. On the other hand, there are some markup formats
that had allow our project to perform a returned to user via HTTP request. These templates will
be used as part of this project.

For the efficiency of our project, we will create Flask web application file, that will be composed
of HTML, CSS and JavaScript codes that will help achieve and implement our VQA interface.
Another important aspect in our back end is the implementation of a Web Server Gateway
Interface also known as WSGI, this one is the standard that specifies the communication standards
between our web server and a client application. PEP333 contains the specifics of these
requirements. These are the advantages that the WSGI bring to our Flask back end wed
application:

e Flexibility in the application's components.

e Interoperability across Python frameworks.

e Scalability of the application as the number of users grows.
e Efficiency in terms of development speed.

The main goal for the back-end web application is to provide a strong back bone structure for
Vision Question Answer user interface in a way multiple users can have an enjoyable and efficient
while interacting with our VQA model.

7.1. Back-End Architecture

The back-end architecture of our VQA web application is one of the most important aspects to
secure the functionality of our model. Our back-end endpoints perform all the operations
connecting with the Database, authentication, searching etc. For this purpose, we have
stablished several blueprints for our Flask to help our structure by grouping several
functionalities into more manageable components.

The Flask Blueprint is split in such a way that the code is divided into different modules. In this
section, we provide the architect with the previous application to make Blueprints that
encapsulate related functionality. In this layout, we provide the most relevant five Flask
Blueprints in our project:

= API Blueprint to enable external systems to search and retrieve product information
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Authentication Blueprint to enable users to log in and recover their password.

= Cart Blueprint for cart and checkout functionality.
= General Blueprint for the homepage.
= Products Blueprint for searching and viewing products.

This structure has made it easier for us to find the code and resources related to a given
functionality.

7.1.1. Flask Blueprint

The development of the blueprint for our web application encapsulates functionality, such as
views, templates, and other resources. To get a taste for how a Flask Blueprint would work,
you can refactor the previous application by moving the index view into a Flask Blueprint. To
do so, you have to create a Flask Blueprint that contains the index view and then use it in the
application. Bellow we will provide an illustration of our web application structure layout:

/VQA_WebApp
|— /app

|— __init__.py

|- models.py

|-— routes.py

|— extensions.py

/instance

|-—— vqa_users.db

/static

|-—— /css

| |-— # ALl css files

|-—— /images

| |-— # ALl Images

|— /is

| |-— # ALl js files

/templates
base.html
error.html
home.html
login.html

|—— register.html

config.py

main.py

Figure 15- VQA Web application structure layout
Here is the following description of the most relevant files from the structure:
e main.py:
Role: Entry point of the Flask application.

Scaling: Maintain for application-wide initializations. Rarely modified.

e /app/__init__.py:
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Role: Initializes the Flask app and binds components like routes, database, and extensions.
Scaling: Import and register new modules or Blueprints here.
e /app/models.py
Role: Contains database models for SQLAIchemy.
Scaling: Define new or update existing models as data requirements evolve.
e /app/routes.py
Role: Houses route definitions and view functions.

Scaling: Add new routes for additional pages and features. Consider splitting into multiple files
or using Blueprints for organization.

e /app/extensions.py

Role: Initializes and configures Flask extensions.

Scaling: Add new extensions or modify existing ones as needed. Keep focused on extensions.
e config.py

Role: Defines configuration settings for various environments.

Scaling: Update or add new configurations for new features requiring environment-specific
settings.

While developing a project in Flask it is important to say that it does not enforce any particular
project layout. The layout of this project is structured with the purpose of an efficient Vision
Question Answer development.

Also, during the development of this project we made sure that only one has a file for the
application logic. This is to avoid ending up with a very large app.py that mixes code that’s
nearly unrelated. This can make it hard to navigate and maintain the script.

7.1.2. HTML Templates

As a view renders a template in Flask, the template file is searched in all directories registered
in the application's template search path. This path is set to ["/templates"] by default, thus
templates are only searched for in the /templates directory within the application's root
directory. Once the template_folder parameter is given while creating a Blueprint, the
Blueprint's templates folder is added to the application's template search path when the Flask
Blueprint is registered.
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Here there is an illustration of the html templates in our web application:

v templates
<> about_us.html
base.html
> error.html
home.html
login.html

modelaccuracy.htmi

register.html

» useraccuracy.html

> webcam.html

Figure 16- Integration of html templates in our web application

The html templates in our work are base.html, home.html, login.html, register.html,
about_us.html and others.

6.1.3 Dependencies

For the development of this project there are some crucial dependencies that need to be
installed. There are 2 main different dependencies to be installed and should not conflict. These
are the following:

Dependencies for Flask:

— flask: conda install -c anaconda flask.

— flask-login: conda install -c conda-forge flask-login.

— flask_sqglalchemy: conda install -c conda-forge flask-sglalchemy.
— flask_cors: conda install -c conda-forge flask_cors.

— jinja2: conda install -c anaconda jinja2.

— bcryp: conda install -c anaconda bcryp.

Dependencies for VQA:
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— pytorch torchvision torchaudio: conda install pytorch torchvision torchaudio pytorch-
cuda=12.1 -c pytorch -c nvidia.

— transformers: conda install -c huggingface transformers.

— PIL: conda install -c anaconda pillow.

— numpy: conda install numpy.

Another point is to create a different or separate environment to develop this project, since it
will conflict the packages and the dependencies. The Virtual environments are independent
groups of Python libraries, one for each project. Packages installed for one project will not affect
other projects or the operating system’s packages. To Create an environment the following step.
First, is to create a project folder and a .venv folder within:

For macOS/Linux:

— S mkdir myproject
— S cd myproject
— S python3 -m venv .venv

For Windows:

— mkdir myproject
— cd myproject
— py-3-mvenv.venv

To conclude in this section, we have provided all the dependencies that need to be installed
with the specific requirement to follow depending on the type of operation system that will be
used. All of them are easy to install but it is important the installed them based on the order
mentioned below.

7.2. Database Integration

The selection of our database integration will be SQLite for the User interface web application.
We decided to use SQLite not only because of her popularity but also simple-to-use relational
database system. It has numerous advantages over other relational databases. At the same
time is easy to install, create the tables and structure priorities.

This data integration will be based on SQLAIchemy in the back end. This will be used to add
database capability to a Flask program. The SQLAIchemy is a Python SQL toolkit and object
relational mapper (ORM) that allows Python to interface with your preferred SQL database
system, such as MySQL, PostgreSQL, SQLite, and others. An ORM is a program that transforms
data across incompatible systems, for instance the object structure in Python and table
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structure in a SQL database. The SQLAIchemy is essentially a connection between Python and
an SQL database.

Although SQLAIchemy is not required to connect with a SQLite database, we chose to utilize it
since it provides you with a skill set that can be applied to any SQL database system in the
future.

Python and a number of different SQL database systems can be interfaced with by SQLAIchemy
some of these systems require the installation of an extra module or library. Since Python 3.x
comes with the sqlite3 module, SQLite doesn't need any additional modules.

The implementation of our database in our back end is show below:

from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager

db = SQLAlchemy()
login_manager = LoginManager()
login_manager. login_view = 'login’

Figure 17 - lllustration of the SQLAIchemy integration in the Back end

In our model.py file we integrated the different classes in the database. The user will compose
of an ID number that will be attached every user once the registration is completed. When the
registration is completed, the information will be stored in the database such as username,
email and password.

Another important class is Reaction, this one provided code is to model and manage user
reactions (like 'like' or 'dislike') to messages or posts within an application based on the
database information. Below we can see an explanation on the structure and the information.

Reaction Class:
* Inherits from db.Model.
* Attributes: id, user_id, message_id, reaction_type.
* Unique id (primary key).
* user_id links to the User model (Foreign Key).
* message_id and reaction_type (like/dislike).
* Relationship with User Model:

In addition, when running the MySQL database locally, a socket string has been included.
This string will be very different on MacOS and Windows.
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8. Cloud Deployment

Below, we provide an illustration of our back-end architecture and the way it interacts with the
cloud. The theme is to illustrate how the client-side interfaces with a sophisticated backend
system to deliver a VQA service, which is likely based on machine learning, as our VQA Model is
integrated. The use of AWS EC2 helps to scalable and reliable cloud infrastructure for hosting the
application.

°® CLOUD - AWS EC2 ‘
gpO®R  USER - CLIENT SIDE

(] HTTP
Request, WEB + PROXY SERVER
Responces
' am
NGIMX T4
a7
Reverse
Proxy
FLASK FRAMEWORK
ﬂ WSGI APPLICATION SERVER
ROUTE HANDLERS
App
@-:.\ Flask 1 'services' \a
VQA MODEL gunicorn ED
</>

Figure 18 - Cloud Deployment Diagram

The diagram is divided into two main sections, indicating different sides of the application: the
User (Client Side) and the Cloud (AWS EC2).

User-Client Side: This part shows mobile and desktop devices, suggesting that the application is
accessible on various platforms. The devices display interface elements, hinting at a user-
friendly GUI for interacting with the VQA system.

Cloud - AWS EC2: This section outlines the server-side components hosted on an Amazon Web
Services (AWS) EC2 instance. It is further divided into layers, each with specific roles:
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Web + Proxy Server (NGINX): NGINX is shown as the entry point for HTTP requests and responses.
It acts as a reverse proxy, directing requests to the appropriate application server.

WSGI Application Server (Gunicorn): This layer has Gunicorn, which is a Python WSGI HTTP
server for UNIX. It's responsible for running Python web applications that adhere to the WSGI
standard. It seems to be the middleware that communicates between NGINX and the Flask
application.

Flask Framework: Represented at the bottom of the cloud section, the Flask framework is
depicted with its logo and internal components such as 'Route Handlers' and 'VQA Model'. This
suggests the Flask application is structured to handle routing with specific logic for the VQA
functionality.

The arrows indicate the flow of HTTP requests and responses between the client and server, as
well as the internal request/response cycle within the server-side infrastructure.

8.1. Server Side

1. Hardware
e Instance Type: AWS EC2 t3.small.
¢ Memory: 16 GB.
e CPU: Capable of handling variable workloads with burstable performance.
e Storage: Based on selected AWS EBS configuration.

¢ Network: Integrated with AWS’s network infrastructure for internet access and
scalability.

2. Software
e Operating System: Ubuntu.
e Web Server: Nginx, serving as a reverse proxy.
o Application Server: Gunicorn, a WSGI server for running Python applications.
¢ Web Framework: Flask, for creating the web application.
e Cloud Platform: AWS EC2 for virtual server infrastructure.
3. Communication Protocol
e HTTP/HTTPS: For handling web requests and responses.

e TCP/IP: Foundation protocol for internet and intranet communication.
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4.

8.2.

e DNS Protocol: For resolving the server's public DNS to its IP address.

Interfacing
e Nginx to Gunicorn: Internal request routing from Nginx to Gunicorn.

e Gunicorn to Flask: Execution of web application logic in Flask via Gunicorn.

Client Side

Hardware
¢ Devices: Varied (e.g., smartphones, tablets, laptops, desktops).

o Specifications: Diverse in terms of CPU, memory, and storage, depending on the
device.

Software
e Web Browser: Chrome, Firefox, Safari, etc., for accessing the web application.
e Operating System: Various (Windows, macOS, Linux, iOS, Android).
Communication Protocol
e HTTP/HTTPS: For sending requests to and receiving responses from the server.
e TCP/IP: Underlying protocol for data transmission over the internet.
Interfacing

e User to Web Browser: Direct interaction via graphical interface for accessing and
interacting with the web application.

e Web Browser to Server: Communication through HTTP/HTTPS requests and
responses.
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9. System Evaluation - Beta Testing

User Feedback is integral to system evaluation as it provides invaluable insights into the
performance, usability, and efficacy of the system. By gathering user feedback, system evaluators
can gauge user satisfaction, identify issues, and assess the system's strengths and weaknesses.
In this application, (VQA chat App), feedback of the user is gathered in binary format (either likes
or dislikes). The detailed implementation is illustrated below: -

9.1. User Feedback collection.

In our application, user feedback is collected through reactions given to bot messages. Users in
the app can provide feedback through simple reactions: either "liking" or "disliking" certain
messages. Each interaction with the "like" or "dislike" button contributes to user feedback. When
a user reacts (likes or dislikes) to a message, an entry is made in the database. Each reaction entry
typically includes the user ID, the ID of the message/content reacted to, and the type of reaction
(like or dislike).

For user accuracy metrics, the system calculates the count and percentages of likes and dislikes
for a particular user. This involves querying the database to count the number of likes and dislikes
associated with a user or specific content ID. These metrics are then displayed, showing the user's
activity and engagement based on their reactions. User accuracy is calculated based on the ratio
of likes or dislikes over the total number of reactions. Feedback data, especially dislikes, could be
used to improve the model, informing decisions about what users find less appealing or helpful.

User Accuracy

Overall Reactions

Positive: 13 (81.25%)

Negative: 3 (18.75%)

Figure 19 - Demonstration of UserAccuracy.html page

34| Page



9.2. Overall Model Accuracy after Beta Testing

e The system calculates the aggregate count of likes and dislikes across all users. This
aggregation involves querying the database's Reaction table, specifically filtering to count
the total number of likes and dislikes stored in the database.

e The system calculates the total number of reactions by summing up the counts of likes
and dislikes obtained in the previous step.

e After computing the total number of reactions, the system calculates the percentage
breakdown for both likes and dislikes. This calculation involves determining what
proportion of the total reactions corresponds to likes and dislikes.

e Overall ViLT Model Accuracy after Beta Testing:

o [#5.7% Positive feedback of total 161 feedback.
o) - Negative feedback of total 161 feedback.

Model Accuracy

Overall Reactions

Positive: 128 (75.74%)

Negative: 41 (24.26%)

Figure 20- Overall Model Accuracy after Beta Testing
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10.Repository Management

10.1. Milestones

©® 70pen . 0Closed

Beta Release

Mo due date (%) Last updated 1 minute ago
Beta Testing Deploy the web application on AWS EC2 Ubuntu server. |...(more)

Flask Web-Application

Mo due date (©) Last updated 2 minutes ago

Understand Flask Web-Application architecture Getting started with __{more)

VQA Model2

Mo due date (%) Last updated & days ago

Transformer (huggingface) based model for VQA.
Pytorch implementation

Train on VQAZ2.0 Dataset

Evaluate the Accuracy

Ul Front End Development
Mo due date () Last updated 9 days ago
Design the Front end web-based user interface (U1) using HTML, €SS ...(mare)

VQA Model1

Mo due date (T) Last updated about 1 month ago
Pytorch implementation of the following papers: Making the V in VQA__(moare)

VQA Dataset for Train-Val-Test

Mo due date (%) Last updated about 1 month ago

Develop the Python script to Download and Extract the Datasets as F._.(more)

project-Initialization
/N Past due by 3 months (%) Last updated 3 months ago

Define Project Targets: System Goal Inputs for the Systern Outputs ._.{mare)

Sort =

75% complete  1open 3 closed
Edit Close Delete

100% complete 0 open 16 closed
Edit Close Delete

100% complete 0open 6 closed
Edit Close Delete

100% complete 0 open 17 closed
Edit Close Delete

100% complete 0open 4 closed
Edit Close Delete

100% complete Oopen 3 closed
Edit Close Delete

100% complete 0 open 4 cdosed
Edit Close Delete

Figure 21- Milestones for Capstone_project_team2
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10.2. Issues Status

Opened Issues:

[J @ 10pen + 55Closed Author - Label -

) @ Overall model evaluation

#57 opened last week by dev-nanthan EP Beta Release

Closed Issues in Reverse Chronological order:

©

G}

©

©

0

©

G}

@

0

0

©

©

©

©

O]

©

©

©

©

O]

10pen « 55 Closed Author - Label -

About_us html
#56 by Roldan340 was closed 3 weeks ago

GPT-4V based model
55 by dev-nanthan was closed 2 weeks 2go O VOA Modsl2

about us page

#54 by dev-nanthan was dosed 2 weeks ago G2 Ul Front End Dev...

new web-cam page, fix bugs

#53 by dev-nanthan was cosed last week G Ul Front End Dev...

question and answering cycle
#52 by dev-nanthan was dosed 3 weeks ago 0 WQA Model2

scale and display full images in the image area

#51 by dev-nanthan was dosed 3 weeks ago G Ul Front End Dev...

display model accuracy

#50 by dev-nanthan was closed 2 weeks 2go G Ul Front End Dev...

record user feedback
#40 by dev-nanthan was dosed 3 weeks ago G Flask Web-Appli..

dynamic jquery based js methods to handle images

#48 by dev-nanthan was closed 3 weeks ago G2 Ul Front End Dev...

Upload a picture button integration
#4T by aayushrijal2017 was closed last month G2 Ul Front End Dev...

submit image display feedback

246 by dev-nanthan was dosed 3 weeks ago G Ul Front End Dev...

Home page responsiveness and space utilization
#45 by dev-nanthan was closed 2 weeks ago € Ul Front End Dev...

admin page
244 by dev-nanthan was dosed lastwesk G2 Ul Front End Dev...

register User page

#43 by dev-nanthan was dosed last month G2 Ul Front End Dev..

Evaluate the Model

242 by dev-nanthan was dosed last w C VOA Madel2

Train the Model on VQA2.0 Dataset
#41 by dev-nanthan was dosed last month G VOA ModelZ

Pytorch implementation of Transformer based model for VQA.
#40 by dev-nanthan was dosed last month 5 VOA Model2

Bug Fixes and Enhancements

#30 by dev-nanthan was dosed 4 minutes ago O Bets Release

Invite Beta testers

#38 by dev-nanthan was closed 4 minutes ago G Beta Release

Deploy to the Production on AWS EC2 using WSGI server.

#37 by dev-nanthan was dosed last w CP Beta Release
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Closed Issues Cont.:

B @ Infer the Model and evaluate its accuracy

[}

©

©

O]

©

©

©

©

©

©

©

©

©

©

©

©

©

#36 by dev-nanthan was closed on Nov 3 G VDA Model1

Train and Validate the Model on Colab-Pro for 16 epoches
#35 by dev-nanthan was closed on Mov 3 l? VoA Modell

Preprocess the Dataset
#34 by dev-nanthan was closed on Nov 3 6 VIOA Model1

Pytorch implementation of Stacked Attention model
#33 by dev-nanthan was closed on Mov 3 l? VoA Modell

python script to download and extract the dataset
#32 by dev-nanthan was closed on MNov 2 G VOA Dataset for ..

Capture a picture button integration.
#31 by aayushrijal2017 was closed last month I:D Ul Fromt End Dev...

python script to download and Extract datasets into Training VM

#30 by dev-nanthan was closed 3 weeks ago

Download and Extract Questions and Annotations from VQA2.0 Dataset
£20 by dev-nanthan was closed on Mov 2 G2 VA Dataset for ..

Download and Extract Coco Images manually
#28 by dev-nanthan was closed on Mov 2 l? VIO Dataset for .

get user feedback and record it in DB
#2T by dev-nanthan was closed 2 weeks ago I:D Ul Front End Dev...

Integrate the VQA Model2
26 by dev-nanthan was closed 3 weeks ago q’ VOA Model2

Handle Multiple Sessions
#25 by dev-nanthan was closed 3 weeks ago I:D Flask Web-Appli_..

module to handle the uploaded image for a session
#24 by dev-nanthan was closed 3 weeks ago I:D Flask Web-Appli_..

Integrate the Front End into Templates
#23 by dev-nanthan was closed last month I:D Flask Web-Appli_..

Document the Env Setup instructions
#22 by dev-nanthan was closed 5 minutes ago I:D Flask Web-Appli_..

Understand Flask Web-Application architecture
#21 by dev-nanthan was closed last month qb Flask Web-Appli...

Flask Application models file
#20 by Roldan340 was dosed on Mov 1 I:D Flask Web-Appli...

Flask Application auth file
#10 by Roldan340 was dosed on Mov 1 q’ Flask Web-Appli...

Index Html
#18 by Roldan340 was dosed on Mov 1 I:D Flask Web-Appli...

Html base
#17 by Roldan340 was dosed on Mov 1 q’ Flask Web-Appli...

Html home page
#16 by Roldan340 was dosed on Mov 1 I:D Flask Web-Appli...

Error Html

#15 by Roldan340 was dosed on Mov 1 q’ Flask Web-Appli...
Utilities

#14 by Roldan340 was dosed on Mov 1 I:D Flask Web-Appli...
_init_ file

#13 by Roldan340 was dosed on Mov 1 I:D Flask Web-Appli...
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£ © HTML Login
#12 by Roldan340 was dosed on Maov 1 qD Flask Web-Appli...

U © create simple templates
#11 by Roldan340 was dosed on Maov 1 I:D Flask Web-Appli...

2 © Javascript for the Upload button.

#10 by aayushrijal2017 was closad on Mov 1 2 Ul Front End Dev..

0o Designing the login page using CSS.

#0 by aayushrijal2017 was closed on Mov 1 I:D Ul Front End Dev...

U @ Html page for login page.

#8 by aayushri}al2017 was dosed on Nov 1 qD Ul Front End Dev...

U © main Page using Bootstrap.
#T7 by aayushrijal2017 was closed on Mov 1 I:D Ul Front End Dev...

U © HtML layout for main page
#6 by asyushrijal2017 was closed on Mov 1 I:D Ul Front End Dev...

0 © pefine User-Interface platform and Requirements

#5 by dev-nanthan was closed on Sep 21 q’ project-Inftializat...

L) © Gather initial resources and datasets
#4 by dev-nanthan was closed on Sep 21 QD project-Inftializat...

0 © identify system requirements

#3 by dev-nanthan was closed on Sep 21 q’ project-Inftializat...

0 © Identify project area and define project topic

#2 by dev-nanthan was closed on Sep 21 QD project-Inftializat...
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11.Project Timeline

For the VQA Web-Application project, we have divided the work into the following categories.
Which are essentially set as the milestones in GitHub and being worked on under each issue.

Updated and tracked Timeline of the project:

(W2 (w3 e [ws e w7 wa | ws | w0

Project Initialization.

Ul Frontend Development.

Flask Web Development.

VQA Data-Set for Train-Test-Val
VQA Model 01

VQA Model 02

Beta Release

Error Resolution and Modification

Improvement and Final Release

Figure 22 - Project Timeline
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