
Dimensional Analysis for Quality Control in

Manufacturing using Blob Detection

Aayush Rijal

Memorial University of Newfoundland

202292045

Thevananthan Thevarasa

Memorial University of Newfoundland

202094858

Abstract— [229 Word] The report presents a robust

implementation of dimensional analysis for quality control in

manufacturing and production industries using advanced blob

detection techniques. The project leverages OpenCV, a

powerful computer vision library, to process manufacturing

images and extract essential dimensional information. The

methodology encompasses image acquisition, preprocessing,

morphological operations, image segmentation, and blob

detection to identify and measure components in the images.

The image preprocessing stage involves converting images to

grayscale and applying noise reduction and contrast

enhancement techniques to ensure cleaner and more reliable

data. Morphological operations, including closing, erosion, and

dilation, further enhance blob detection accuracy. Image

segmentation techniques, like connected component analysis,

efficiently identify and label individual blobs or regions of

interest. Subsequently, dimensional analysis measures crucial

blob characteristics, such as area, perimeter, centroid, and

bounding box, to evaluate compliance with specified tolerances,

ensuring product quality and consistency. While the

segmentation approach encountered challenges in overlapping

object scenarios and poor lighting conditions, the project

effectively addresses such issues by implementing a minimum-

size filtering mechanism to eliminate noise artifacts. Overall,

this implementation of dimensional analysis contributes to

better quality control practices in manufacturing industries by

automating defect detection and dimensional analysis, reducing

human errors in inspection tasks, and enhancing product

consistency. The report showcases the step-by-step

implementation and presents the results of the dimensional

analysis, highlighting the project's effectiveness and practicality

in improving quality control in manufacturing processes.

Index Terms— Image Acquisition, Image Processing, blob

detection, Segmentation.

I. INTRODUCTION

[230 Words] In manufacturing industries, dimensional
analysis plays a crucial role in ensuring product quality and
conformity to specifications. However, performing
dimensional analysis manually is time-consuming and error
prone. Automating this process plays a critical role in mass
scaling production.

This challenge aims to develop an image processing
solution using blob detection techniques to automate
dimensional analysis for quality control in manufacturing.
The objective is to preprocess the images, apply
morphological image operations for noise reduction, perform
image segmentation to identify individual objects, measure
the dimensions of blobs accurately, and analyze them in
accordance with predefined specifications. By automating
this process, manufacturers can improve efficiency, reduce
errors, and maintain consistent quality standards.

The challenge lies in accurately detecting and measuring
complex blob shapes, dealing with variations in lighting and

background, and handling potential image noise and artifacts.
Some of the Potential Applications are given below: -

1. Food Production: The solution can be used in food
production for baked goods, packaged food items, and
fruits/vegetables, ensuring consistent portion sizes,
packaging integrity, and product quality.

2. Pharmaceutical Industry: The solution can analyze
the dimensions of tablets and capsules, including their
diameter, thickness, and shape consistency.

3. Consumer Goods Manufacturing: The solution can
be used for quality control in the production of bottles, cans,
and packaging materials. It can measure parameters such as
diameter, height, and thickness of these containers, ensuring
consistent sizes, shapes, and structural integrity.

II. LITERATURE REVIEW

[750 Words] Several relevant works were cited in this field.

We reviewed some of the work and summarized it in detail.

1. “A Real-Time Approach for Automatic Food Quality

Assessment Based on Shape Analysis” [1]:

The journal titled "A Real-Time Approach for Automatic

Food Quality Assessment Based on Shape Analysis" by Luca

Donati, Eleonora Iotti, and Andrea Prati addresses the

importance of accurate product sorting in the agricultural

industry. The authors highlight the significance of quality

control measures to prevent the wastage of good products and

ensure the proper disposal of rotten, broken, or deformed

food items. They emphasize that existing sorting systems

primarily rely on color information, which may not be

sufficient to detect certain common defects. In contrast, the

shape of a product can reveal important defects and is highly

reliable in detecting foreign objects mixed with food.

Moreover, shape analysis enables detailed measurements of

a product, such as its area, length, width, and anisotropy. The

paper proposes a comprehensive solution for sorting food

based on shape analysis, considering real-world challenges

such as accuracy, execution time, and latency. It provides an

overview of a complete system implemented on advanced

measurement machines, addressing the need for reliable and

efficient food sorting based on shape characteristics.

2. “Smart manufacturing applications for inspection and

quality assurance processes” [2]:

The conference paper titled "Smart manufacturing

applications for inspection and quality assurance processes"

by Maremys Galindo-Salcedo, Altagracia Pertúz-Moreno,

Stefania Guzmán-Castillo, Yulineth Gómez-Charris, and

Alfonso R. Romero-Conrado discusses the significant impact

of smart manufacturing on inspection and quality assurance

processes, specifically focusing on innovative technologies in

machine learning. The paper presents a systematic review of

automation applications in statistical quality control within

industrial companies. The subtopics covered include artificial

vision, intelligent manufacturing, inspection across various

production processes, neural networks, automation using

statistical process control techniques, and quality assurance.

The authors analyze these technologies, highlighting their

ability to improve automated manufacturing processes by

enhancing efficiency, performance, and productivity.

Furthermore, these technologies contribute to time

optimization, cost reduction, strengthened inspection

procedures, and quality assurance. The paper concludes by

identifying future research opportunities for industrial

applications in the field.

3. “Segmentation Techniques for Rotten Fruit

detection” [3]:
The conference paper titled "Segmentation Techniques

for Rotten Fruit Detection" by K. Roy, S. S. Chaudhuri, S.

Bhattacharjee, S. Manna, and T. Chakraborty focuses on the

development of segmentation techniques for the detection of

rotten vegetables. The authors highlight the importance of

automating the sorting process to distinguish between fresh

and rotten vegetables, addressing potential health risks

associated with consuming rotten produce. The paper

presents three segmentation techniques: Marker-Based

Segmentation, Color-Based Segmentation, and Edge

Detection. These techniques effectively identify and isolate

the rotten portions of vegetables, enabling the separation of

unhealthy vegetables from the good ones. By implementing

an automated system that incorporates these segmentation

techniques, the sorting process for food product

manufacturing units can be significantly improved in terms

of time, manpower, and accuracy. The proposed techniques

underwent a multi-level analysis and were evaluated using

sets of images containing both healthy and rotten vegetables.

The experimental results validate the efficacy of the

suggested segmentation techniques for detecting and sorting

rotten vegetables, thereby enhancing food safety and quality

assurance processes.

4. “Advances in Machine Vision Applications for

Automatic Inspection and Quality Evaluation of Fruits

and Vegetables” [4]:

The journal titled "Advances in Machine Vision

Applications for Automatic Inspection and Quality

Evaluation of Fruits and Vegetables" by C. Sergio, A. Nuria,

M. Enrique, G.-S. Juan, and B. Jose discusses the

advancements in artificial vision systems for the automatic

inspection and quality evaluation of fruits and vegetables.

The authors highlight the various applications of these

systems, including grading, quality estimation based on

external parameters or internal features, monitoring fruit

processes during storage, and evaluating experimental

treatments. Artificial vision systems offer capabilities beyond

human capacity, allowing for objective evaluation of long-

term processes and detection of events outside the visible

electromagnetic spectrum. By utilizing ultraviolet or near-

infrared spectra, these systems can explore defects or features

that are invisible to the human eye. Hyperspectral systems

provide detailed information about individual components or

damage, enabling the development of new computer vision

systems tailored to specific objectives. In-line grading

systems can inspect large quantities of fruit or vegetables

individually, providing statistical data about the entire batch.

Overall, artificial vision systems not only replace human

inspection but also enhance its capabilities. This work

presents the latest developments in applying this technology

to inspecting the internal and external quality of fruits and

vegetables, showcasing the potential for improved quality

control and evaluation in the agricultural industry.

III. METHODOLOGY

This section of the paper focuses on detailed steps of the
project which includes Image Acquisition, Image
Preprocessing, Morphological Image Operations, Image
Segmentation and valid Blobs Detection, and Dimensional
Analysis and Filtering. The detailed explanation of each step
is illustrated below: -

A. Image Acquisition: -

[123 word] Since this project is focused on Dimensional
Analysis for Manufacturing or Production we have
chosen “Food Production” to apply the developed system.
Capturing high-resolution images of
manufactured/production objects using appropriate
imaging techniques and equipment with consistent
lighting conditions are highly time consuming and hard to
get access with the given context for the project under this
Module. Therefore, we used DALL·E 2 developed by
OpenAI to generate the required dataset for the project
with desired environment conditions.

 DALL·E 2 is an AI system that can create realistic images
and art from a description in natural language. URL:
https://openai.com/dall-e-2

 We focused on Generating two types of Datasets:
Blueberries Production and Potato Chips Manufacturing.
Few Samples of Datasets looks like as shown in Fig 1,2,3,4.

Figure 1 Blueberries data set image sample

https://openai.com/dall-e-2

Figure 2 Sample of blueberries dataset image

Figure 3 Sample image of Potato-Chips on Dataset

Figure 4 Another Sample of Potato Chips on Dataset

B. Image Preprocessing.

 [365 word] After we obtain the image, we will process the
image further. The purpose of image preprocessing is to
enhance the image quality, remove noise, correct distortions,
and extract relevant features, making it more suitable for
subsequent tasks such as object detection, recognition, or
image analysis. The detailed steps for image processing are
given below: -

1) Grayscale Conversion: -

 The first step of the Image Processing is the Gray Scale

Conversion. In OpenCV, grayscale conversion is achieved by

using the cv2.cvtColor() function with the parameter

cv2.COLOR_BGR2GRAY. This function takes a color

image as input and returns a single-channel grayscale image

where each pixel value represents the intensity of the

corresponding pixel in the original image.

2) Noise Removal and Contrast Enhancement:-

 Secondly, the grayscale image is subjected to the Noise

Removal step and goes through the Contrast Enhancement.

Median blur and Gaussian blur are both image filtering

techniques used for noise reduction and image smoothing in

image processing[5]. Each technique applies a kernel or a

window over the image to calculate the filtered pixel value

based on neighboring pixels.

 Contrast enhancement enhances the contrast of the images

using histogram equalization to improve the visibility of the

components or features. Histogram equalization, as done in

OpenCV using enhanced_image = cv2.equalizeHist(blurred),

is performed to enhance the contrast of the blurred image. By

redistributing the pixel intensities across the entire range,

histogram equalization stretches the intensity values, making

the image visually more vibrant and improving the visibility

of details in different regions.

 The implementation of these steps in code is illustrated

below: -

def preprocess(gray, blur, enhance):

 enhanced_image = None

 # Noise Filtering based on the Filter
 if blur == "gaussian":
 # Apply Gaussian blur to reduce noise
 enhanced_image = cv2.GaussianBlur(gray,
(11, 11), 0)
 elif blur == "median":
 # Apply Median blur to reduce noise
 enhanced_image = cv2.medianBlur(gray, 11)

 if enhance:
 # Contrast Enhancement
 enhanced_image =
cv2.equalizeHist(blurred) # Apply histogram
equalization for contrast enhancement

 return enhanced_image

In summary, the "preprocess" function takes a grayscale

image and applies noise filtering (Gaussian blur or Median

blur) based on the "blur" parameter. Optionally, it enhances

the image's contrast using histogram equalization, based on

the "enhance" parameter. The resulting preprocessed and, if

specified, enhanced image is then returned.

3) Binarization/Thresholding.

 Global thresholding and adaptive thresholding are image

binarization techniques tested for this application to separate

the foreground objects (components of interest) from and

background regions based on pixel intensities. Global

thresholding is selected for our application because the

images have consistent (controlled environment) foreground

and background intensities across the entire image. It is

computationally efficient and straightforward to implement.

The implementation of thresholding is as given below: -

Performed thresholding on the blurred image to
create a binary image using cv2.threshold().
segment the foreground objects from the
background.

Apply Global Thresholding
def binary_threshold(image, threshold_value):

 # Apply binary thresholding
 _, binary_image = cv2.threshold(image,
threshold_value, 255, cv2.THRESH_BINARY_INV)

 return binary_image

Apply Adaptive Thresholding
def adaptive_threshold(image, block_size,
constant):

 # Apply adaptive thresholding
 binary_image = cv2.adaptiveThreshold(image,
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
 cv2.THRE
SH_BINARY_INV, block_size, constant)

 return binary_image

C. Morphological Image Operations:

 [206 word] The following Morphological Processing

Techniques were used to fill the holes in the blobs, separate

the blobs from each other and to alter the shapes of blobs as

required.

Morphological Closing: Morphological closing is an

operation that combines dilation followed by erosion. It is

used to fill gaps in the detected blobs and smooth the blobs.

In this application, a square-shaped kernel of size (11, 11) is

used for the closing operation. The cv2.morphologyEx()

function is applied with cv2.MORPH_CLOSE as the

operation type.

Morphological Erosion: Morphological erosion is an

operation that reduces the size of bright regions (white areas

in this case). It helps distinguish blobs that are close to each

other. In this application, a smaller square-shaped kernel of

size (3, 3) is used for the erosion operation. The cv2.erode()

function is applied with iterations=1 to perform one iteration

of erosion.

Morphological Dilation: Morphological dilation is an

operation that increases the size of bright regions. It is used

here to fill small gaps inside each blob, which might have

occurred due to thresholding or erosion. In this application, a

larger square-shaped kernel of size (5, 5) is used for the

dilation operation. The cv2.dilate() function is applied with

iterations=1 to perform one iteration of dilation.

The implementation of each step i.e., closing, erosion,

dilation is given in the form of python code: -

def morphology(thresh, cl_ker, er_ker, di_ker):
 # Perform morphological closing to fill gaps
and smooth the blobs
 kernel = np.ones((cl_ker, cl_ker), np.uint8)
 closing = cv2.morphologyEx(thresh,
cv2.MORPH_CLOSE, kernel)

 # Perform morphological erosion to
distinguish blobs
 kernel_erosion = np.ones((er_ker, er_ker),
np.uint8)
 erosion = cv2.erode(closing, kernel_erosion,
iterations=1)

 # Perform morphological dilation to fill
small gaps inside each blob
 kernel_dilation = np.ones((di_ker, di_ker),
np.uint8)
 dilation = cv2.dilate(erosion,
kernel_dilation, iterations=1)

 # Set the Processed Image for Connected
SComponent Analysis
 processed_img = closing

 return processed_img

Figure 5 Steps for blob Detection

D. Image Segmentation and valid Blobs Detection.

 [72 Word] The Segmentation of the foreground objects from

the background is executed in the following order as shown

in fig. 5.

A Valid blob is considered based on the application criteria

by defining a minimum area to be eligible for a valid blob for

the specific application. The Minimum Area for valid

detection is configurable via command line arguments. The

measurement metrics and filtering of these blobs are

discussed in the next section.

E. Dimensional Analysis and Filtering.

 [220 word] The End goal of the application is to perform the

Dimensional Analysis and Filtering of the objects to evaluate

certain statistics and information about the production or

Manufacturing, report the evaluations or visualize them.

Statistical Analysis, Reporting, and Visualization: Perform

statistical analysis on the collected dimensional

measurements to evaluate variations, trends, and

distributions. Generate reports or visual representations

summarizing the dimensional analysis results, such as

statistical charts, histograms, or control charts, to present the

measured dimensions, deviations, and trends.

The following measurements were obtained during the

analysis.

A. Area Calculation: Measured the area of each selected blob,

representing the size or extent of the component.

B. Perimeter Calculation: Measured the perimeter of each

blob, representing the boundary length.

C. Centroid Calculation: Determined the centroid (center of

mass) of each blob, providing the spatial position

information.

D. Bounding Box Calculation: Determine the bounding box

dimensions of each blob, enclosing the component within a

rectangular box.

For this demonstration using a batch of blueberries, the

following simple filtering criteria is defined:

i. Threshold value to detect Oversized blueberries.

(Configurable via command line)

ii. Threshold value to detect Undersized blueberries.

(Configurable via command line)

Analyzed the measured dimension (Area) to assess their

compliance with the specified tolerances. Compare the

measurements against predefined criteria or dimensional

specifications to determine whether the product meets quality

control standards.

The code implementation for the blob detection, dimensional

analysis, and filtering:

def detectAndMeasure(org_img, proc_img, blobMin,
filtMax, filtMin):

 # Count the objects which satisfies the constraints
 filt_stats = {
 "tot_valid_blobs": 0,
 "tot_under_Sized": 0,
 "tot_over_Sized" : 0,
 "percent_under":0,
 "percent_over":0,
 }

 # Perform connected component analysis
 num_labels, labels, stats, centroids =
cv2.connectedComponentsWithStats(proc_img,
connectivity=8)

 # Print Total Number of Blobs Detected
 print(f"Total Blobs Count: {num_labels}")

 # Define the minimum and maximum area thresholds to
filter the blobs (adjust these values as needed)
 min_area_threshold = blobMin

 # Define the Filtering Blob Size for Measurement
Analysis

 over_sized = filtMax
 under_sized = filtMin

 # Copy the original image for different markings
 org_img_copy = org_img.copy()

 # Loop through each detected blob
 for label in range(1, num_labels): # Start from 1
to exclude the background label 0
 area = stats[label, cv2.CC_STAT_AREA]

 # Check if the area is within the specified
range
 if min_area_threshold < area:

 filt_stats["tot_valid_blobs"] += 1

 # Get the bounding box coordinates for the
blob
 x, y, w, h = stats[label,
cv2.CC_STAT_LEFT], stats[label, cv2.CC_STAT_TOP], \
 stats[label,
cv2.CC_STAT_WIDTH], stats[label, cv2.CC_STAT_HEIGHT]

 # Draw the bounding box around the blob
based on Filtered Criteria

 # Mark All the blobs valid except
background
 cv2.rectangle(org_img_copy, (x, y), (x + w,
y + h), (0, 0, 0), 2)

 # Mark Bounding Box complying Filtering
Condition
 if area < under_sized:
 filt_stats["tot_under_Sized"] +=1
 # Identify with BLUE bounding box
 cv2.rectangle(org_img, (x, y), (x + w,
y + h), (255, 0, 0), 2)
 elif area >= over_sized:
 filt_stats["tot_over_Sized"] +=1
 # Identify with RED bounding box
 cv2.rectangle(org_img, (x, y), (x + w,
y + h), (0, 0, 255), 2)
 else:
 # Identify with GREEN bounding box
 cv2.rectangle(org_img, (x, y), (x + w,
y + h), (0, 255, 0), 2)

 # Print the area of the blob
 #print(f"Blob {label}: Area = {area}
pixels")

 # Calculate the Percentage of Over and Under Sized
batching
 if filt_stats["tot_valid_blobs"] > 0 :
 filt_stats["percent_under"] =
round((filt_stats["tot_under_Sized"]/filt_stats["tot_va
lid_blobs"])*100, 2)
 filt_stats["percent_over"] =
round((filt_stats["tot_over_Sized"]/filt_stats["tot_val
id_blobs"])*100, 2)
 else:
 filt_stats["percent_under"] = 0
 filt_stats["percent_over"] = 0

 return org_img_copy, org_img, filt_stats

IV. RESULTS. [900 WORDS]

A. Grayscale Conversion:

Input Image:

Figure 6 Original Input Image RGB

Output Image:

Figure 7 Grayscale Converted Image

Grayscale conversion involves converting a color image
(commonly represented in the RGB color space) into a single-
channel grayscale image. The grayscale image represents the
intensity of each pixel, ranging from 0 (black) to 255 (white).

It’s observed that Each pixel in the grayscale image carries
only one value that corresponds to the brightness of the
corresponding pixel in the color image.

B. Noise Removal and Contrast Enhancement:

Output:

Figure 8 Noise Removed, Enhanced Image

We can see the foreground objects are smoother and more

blurred after noise filtering. The application tested both types

of blurring and selected Median blurring for the application

because it effectively removes salt-and-pepper noise while

preserving the edges and features of the objects being

analyzed.

Unlike Gaussian blur, which may blur edges and boundaries,

median blur replaces noisy pixels with the median value of

the neighborhood, ensuring that extreme values caused by

noise do not affect the overall analysis.

By incorporating noise removal and contrast enhancement in

image processing applications, the resulting images are

cleaner, more visually appealing, and better suited for

subsequent analysis tasks, such as object detection,

segmentation, and feature extraction.

C. Binarzation/Thresholding:

Output:

Figure 9 Thresholded Image - Global

Figure 10 Thresholded Image – Adaptive

We have tested both Global thresholding and adaptive

thresholding for image binarization to separate foreground

objects from background regions based on pixel intensities.

Global Thresholding observations:

• Foreground objects are preserved more.

• Simple method using a single threshold value for the

entire image.

• Assigns pixels below the threshold to the

background and above to the foreground.

• Suitable for images with uniform lighting and

consistent foreground-background separation.

Adaptive Thresholding Observations:

• Edges are preserved better than global thresholding,

but the inner body is more eroded than global

thresholding.

• Calculates different threshold values for different

regions of the image.

• Considers local pixel intensity variations by

dividing the image into smaller regions.

• Effective for images with lighting variations,

shadows, or uneven backgrounds.

Therefore, Global thresholding is chosen due to the images

having consistent foreground-background intensities in a

controlled environment. It offers computational efficiency

and easy implementation.

D. Morphological Image Operations:

Input Image:

Figure 11 Input image for Morphological processing

Output Image:

Figure 12 Output image after Morphological Processing

From the output image we can observe that the holes and non-

uniformities from the thresholding are recovered from the

morphological processing.

The following Morphological Processing Techniques are

utilized for the application.

Morphological closing, achieved through dilation followed

by erosion using an 11x11 square-shaped kernel, is employed

to fill gaps in blobs and smoothen their boundaries.

Morphological erosion with a smaller 3x3 square kernel

reduces the size of bright regions, aiding in distinguishing

closely positioned blobs.

On the other hand, morphological dilation, employing a

larger 5x5 square kernel, enlarges bright regions to fill small

gaps within blobs caused by thresholding or erosion.

By employing morphological closing, erosion, and dilation in

sequence, the accuracy of blob detection and the separation

of adjacent blobs are significantly improved. Morphological

closing fills gaps and smooths blobs, erosion aids in

distinguishing closely connected blobs, and dilation ensures

that small gaps within each blueberry are filled, leading to

more precise and accurate detection of individual blobs in the

final output.

E. Image Segmentation and valid Blobs Detection:

Figure 13 Blobs detected and added bounding boxes.

Bounding boxes of black color were calculated and masked

on top of the original image to verify the blob detection and

bounding box calculations.

Each blob marked with bounding boxes is segmented from

the background in a stepwise manner. First, thresholding is

applied to convert the preprocessed image into a binary image

based on intensity, using either global or adaptive

thresholding. Next, morphological processing is performed,

including closing, erosion, and dilation, to enhance blob

detection accuracy and separate adjacent blobs.

Connected component analysis is then conducted on the

binary image to identify and label individual blobs or regions

of interest. A blob is considered valid based on application

criteria, with a minimum area threshold that can be

configured via command-line arguments.

F. Dimensional Analysis and Filtering.

The aim of the application is to conduct dimensional analysis

and filtering of objects to assess specific statistics and

manufacturing information. This involves performing

statistical analysis on collected dimensional measurements to

identify variations, trends, and distributions. The results are

then presented through reports or visual representations like

statistical charts, histograms, or control charts to showcase

the measured dimensions, deviations, and trends.

Statistical Analysis Output:

Figure 14 Statistical Analysis output

Visualization: Filtered Blobs

Figure 15 Visualization of Filtered Blobs

Observation:

• Undersized blobs: Blue bounding Box.

• Oversized blobs: Red bounding Box

• Acceptable range Blobs: Green bounding box.

For this demonstration using a batch of blueberries, the

following simple filtering criteria is defined:

• Threshold value to detect Oversized blueberries.

(Configurable via command line)

• Threshold value to detect Undersized blueberries.

(Configurable via command line)

Analyzed the measured dimension (Area) to assess their

compliance with the specified tolerances. Compare the

measurements against predefined criteria or dimensional

specifications to determine whether the product meets quality

control standards.

G. Unsuccessful Result.

Figure 16 unsuccessful blob detection

Figure 17 Unsuccessful measurement Analysis

While testing a batch of potato chips, we faced unsuccessful
blob detection which results in false measurement analysis.
The issue occurred when the segmentation process fails to
accurately separate neighboring chips due to improper
thresholding and morphological processing. This failure lead
to connected components, where adjacent chips become
fused together into a single blob during connected component
analysis.
The issue of improper segmentation may arise in cases where
the intensity or color variations between neighboring chips
are subtle, making it difficult for the thresholding technique
to distinguish them effectively. As a result, a single threshold
value might not be sufficient to differentiate adjacent chips,
causing them to be grouped together as a single object during
connected component analysis.
Additionally, the application of morphological operations,
such as dilation and erosion, can further exacerbate the
problem if the kernel sizes are not appropriately chosen.
Incorrect kernel sizes may cause neighboring chips to merge
or erode, leading to distorted or fused blob shapes.
Due to the merging of neighboring chips during the
segmentation process, filtering criteria based on blob size or
shape might not be effectively applied. Consequently, the
measurement and analysis of individual chips' dimensions
become unreliable, potentially impacting the quality control
assessments and batch evaluation for manufacturing.

 V. Conclusion: -

 [465 Words] The implemented dimensional analysis for
quality control in manufacturing using blob detection,
focusing on image processing techniques such as noise
reduction, thresholding, morphological operations, and
image segmentation, has demonstrated both effectiveness and
limitations.

 In scenarios where objects are well-separated and lighting
conditions are favorable, the effectiveness of the project
becomes evident. The blob detection algorithm accurately
and reliably identifies the relevant components or features,
enabling precise dimensional analysis. This success is
particularly pronounced in datasets with spherical objects,
such as blueberries, where the distinctive shapes and
sufficient spacing between each object facilitate accurate
blob detection and dimensional measurements.

 The successful parameter ranges identified during the
project contribute significantly to the robustness and
accuracy of the dimensional analysis. The best global
thresholding range of 135 to 150 has proven to be effective in
segmenting objects from the background and generating
binary images suitable for further processing.

 The choice of parameter values for morphological
operations has been critical in ensuring precise blob
detection. The median filter with a kernel size of 11
effectively reduced noise and improved the quality of the
preprocessed images. A closing kernel size of 11x11 and a
dilation kernel size of 5 assisted in filling gaps and restoring
blob shapes, respectively. Additionally, an erosion kernel
size of 3 helped to smooth the blob contours.

 However, it is worth noting that the segmentation approach
faced challenges in cases where objects overlapped with each
other or when the lighting conditions were poor. These
challenging scenarios led to a degradation in the performance
of the segmentation technique, resulting in inaccuracies in
blob detection and potentially impacting the dimensional
analysis results. Despite these limitations, the project has
successfully demonstrated the practicality and relevance of
employing image processing techniques in quality control for
manufacturing.

One of the project's strengths lies in its ability to address noise
artifacts effectively. By setting the minimum size (area) for a
valid blob, such as 1000 pixels in this case, the system
efficiently filtered out small noise artifacts and ensured that
only significant blobs were considered during the analysis.
This filtering mechanism enhanced the reliability of the
dimensional analysis by focusing on meaningful components
while reducing the impact of undesired artifacts. Thus, the
incorporation of the minimum size criterion has proved to be
valuable in improving the accuracy and validity of the
measured dimensional data.

 In conclusion, the dimensional analysis for quality control
in manufacturing using blob detection and image processing
techniques has proven effective within certain conditions and
parameter ranges. While the project successfully automates
dimensional analysis and defect detection, further
improvements are possible by addressing challenges related
to object overlapping and varying lighting conditions. This
work sets the foundation for enhancing quality control
practices in manufacturing industries, opening avenues for
future research in developing more robust and adaptable
image processing algorithms.

References
[1] D. Luca, D. Luca and A. Prati, "A Real-Time Approach for Automatic

Food Quality Assessment Based on Shape Analysis," International
Journal of Computational Intelligence and Applications, vol. 20, p. 03,
2021.

[2] M. Galindo-Salcedo, A. Pertúz-Moreno, S. Guzmán-Castillo and A. R.
Romero-Conrado, "Smart manufacturing applications for inspection
and quality assurance processes," in 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks / 11th
International Conference on Current and Future Trends of Information
and Communication Technologies in Healthcare, Colombia, 2022.

[3] K. Roy, S. Chaudhuri, S. Bhattacharjee and S. Manna, ""Segmentation
Techniques for Rotten Fruit detection,"," in 2019 International
Conference on Opto-Electronics and Applied Optics (Optronix),
Kolkata, India, 2019.

[4] C. Sergio, A. Nuria, M. Enrique, G.-S. Juan and B. Jose, "Advances in
Machine Vision Applications for Automatic Inspection and Quality
Evaluation of Fruits and Vegetables," Food and Bioprocess
Technology, vol. 4, p. 487–504, 2021.

[5] D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W.
Philips and I. Lemahieu, "Noise reduction by fuzzy image filtering," in
IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 429-436, Aug.
2003

