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Abstract— [229 Word] The report presents a robust 

implementation of dimensional analysis for quality control in 

manufacturing and production industries using advanced blob 

detection techniques. The project leverages OpenCV, a 

powerful computer vision library, to process manufacturing 

images and extract essential dimensional information. The 

methodology encompasses image acquisition, preprocessing, 

morphological operations, image segmentation, and blob 

detection to identify and measure components in the images. 

The image preprocessing stage involves converting images to 

grayscale and applying noise reduction and contrast 

enhancement techniques to ensure cleaner and more reliable 

data. Morphological operations, including closing, erosion, and 

dilation, further enhance blob detection accuracy. Image 

segmentation techniques, like connected component analysis, 

efficiently identify and label individual blobs or regions of 

interest. Subsequently, dimensional analysis measures crucial 

blob characteristics, such as area, perimeter, centroid, and 

bounding box, to evaluate compliance with specified tolerances, 

ensuring product quality and consistency. While the 

segmentation approach encountered challenges in overlapping 

object scenarios and poor lighting conditions, the project 

effectively addresses such issues by implementing a minimum-

size filtering mechanism to eliminate noise artifacts. Overall, 

this implementation of dimensional analysis contributes to 

better quality control practices in manufacturing industries by 

automating defect detection and dimensional analysis, reducing 

human errors in inspection tasks, and enhancing product 

consistency. The report showcases the step-by-step 

implementation and presents the results of the dimensional 

analysis, highlighting the project's effectiveness and practicality 

in improving quality control in manufacturing processes. 

Index Terms— Image Acquisition, Image Processing, blob 

detection, Segmentation. 

I. INTRODUCTION  

[230 Words] In manufacturing industries, dimensional 
analysis plays a crucial role in ensuring product quality and 
conformity to specifications. However, performing 
dimensional analysis manually is time-consuming and error 
prone. Automating this process plays a critical role in mass 
scaling production. 

This challenge aims to develop an image processing 
solution using blob detection techniques to automate 
dimensional analysis for quality control in manufacturing. 
The objective is to preprocess the images, apply 
morphological image operations for noise reduction, perform 
image segmentation to identify individual objects, measure 
the dimensions of blobs accurately, and analyze them in 
accordance with predefined specifications. By automating 
this process, manufacturers can improve efficiency, reduce 
errors, and maintain consistent quality standards.  

The challenge lies in accurately detecting and measuring 
complex blob shapes, dealing with variations in lighting and 

background, and handling potential image noise and artifacts. 
Some of the Potential Applications are given below: - 

1. Food Production: The solution can be used in food 
production for baked goods, packaged food items, and 
fruits/vegetables, ensuring consistent portion sizes, 
packaging integrity, and product quality.  

2. Pharmaceutical Industry: The solution can analyze 
the dimensions of tablets and capsules, including their 
diameter, thickness, and shape consistency. 

3. Consumer Goods Manufacturing: The solution can 
be used for quality control in the production of bottles, cans, 
and packaging materials. It can measure parameters such as 
diameter, height, and thickness of these containers, ensuring 
consistent sizes, shapes, and structural integrity. 

II. LITERATURE REVIEW 

[750 Words] Several relevant works were cited in this field. 

We reviewed some of the work and summarized it in detail. 

 

1. “A Real-Time Approach for Automatic Food Quality 

Assessment Based on Shape Analysis” [1]: 

The journal titled "A Real-Time Approach for Automatic 

Food Quality Assessment Based on Shape Analysis" by Luca 

Donati, Eleonora Iotti, and Andrea Prati addresses the 

importance of accurate product sorting in the agricultural 

industry. The authors highlight the significance of quality 

control measures to prevent the wastage of good products and 

ensure the proper disposal of rotten, broken, or deformed 

food items. They emphasize that existing sorting systems 

primarily rely on color information, which may not be 

sufficient to detect certain common defects. In contrast, the 

shape of a product can reveal important defects and is highly 

reliable in detecting foreign objects mixed with food. 

Moreover, shape analysis enables detailed measurements of 

a product, such as its area, length, width, and anisotropy. The 

paper proposes a comprehensive solution for sorting food 

based on shape analysis, considering real-world challenges 

such as accuracy, execution time, and latency. It provides an 

overview of a complete system implemented on advanced 

measurement machines, addressing the need for reliable and 

efficient food sorting based on shape characteristics. 

 

2. “Smart manufacturing applications for inspection and 

quality assurance processes” [2]: 

The conference paper titled "Smart manufacturing 

applications for inspection and quality assurance processes" 

by Maremys Galindo-Salcedo, Altagracia Pertúz-Moreno, 

Stefania Guzmán-Castillo, Yulineth Gómez-Charris, and 

Alfonso R. Romero-Conrado discusses the significant impact 

of smart manufacturing on inspection and quality assurance 

processes, specifically focusing on innovative technologies in 



machine learning. The paper presents a systematic review of 

automation applications in statistical quality control within 

industrial companies. The subtopics covered include artificial 

vision, intelligent manufacturing, inspection across various 

production processes, neural networks, automation using 

statistical process control techniques, and quality assurance. 

The authors analyze these technologies, highlighting their 

ability to improve automated manufacturing processes by 

enhancing efficiency, performance, and productivity. 

Furthermore, these technologies contribute to time 

optimization, cost reduction, strengthened inspection 

procedures, and quality assurance. The paper concludes by 

identifying future research opportunities for industrial 

applications in the field. 

 

3. “Segmentation Techniques for Rotten Fruit 

detection” [3]: 
The conference paper titled "Segmentation Techniques 

for Rotten Fruit Detection" by K. Roy, S. S. Chaudhuri, S. 

Bhattacharjee, S. Manna, and T. Chakraborty focuses on the 

development of segmentation techniques for the detection of 

rotten vegetables. The authors highlight the importance of 

automating the sorting process to distinguish between fresh 

and rotten vegetables, addressing potential health risks 

associated with consuming rotten produce. The paper 

presents three segmentation techniques: Marker-Based 

Segmentation, Color-Based Segmentation, and Edge 

Detection. These techniques effectively identify and isolate 

the rotten portions of vegetables, enabling the separation of 

unhealthy vegetables from the good ones. By implementing 

an automated system that incorporates these segmentation 

techniques, the sorting process for food product 

manufacturing units can be significantly improved in terms 

of time, manpower, and accuracy. The proposed techniques 

underwent a multi-level analysis and were evaluated using 

sets of images containing both healthy and rotten vegetables. 

The experimental results validate the efficacy of the 

suggested segmentation techniques for detecting and sorting 

rotten vegetables, thereby enhancing food safety and quality 

assurance processes. 

 

4. “Advances in Machine Vision Applications for 

Automatic Inspection and Quality Evaluation of Fruits 

and Vegetables” [4]: 

The journal titled "Advances in Machine Vision 

Applications for Automatic Inspection and Quality 

Evaluation of Fruits and Vegetables" by C. Sergio, A. Nuria, 

M. Enrique, G.-S. Juan, and B. Jose discusses the 

advancements in artificial vision systems for the automatic 

inspection and quality evaluation of fruits and vegetables. 

The authors highlight the various applications of these 

systems, including grading, quality estimation based on 

external parameters or internal features, monitoring fruit 

processes during storage, and evaluating experimental 

treatments. Artificial vision systems offer capabilities beyond 

human capacity, allowing for objective evaluation of long-

term processes and detection of events outside the visible 

electromagnetic spectrum. By utilizing ultraviolet or near-

infrared spectra, these systems can explore defects or features 

that are invisible to the human eye. Hyperspectral systems 

provide detailed information about individual components or 

damage, enabling the development of new computer vision 

systems tailored to specific objectives. In-line grading 

systems can inspect large quantities of fruit or vegetables 

individually, providing statistical data about the entire batch. 

Overall, artificial vision systems not only replace human 

inspection but also enhance its capabilities. This work 

presents the latest developments in applying this technology 

to inspecting the internal and external quality of fruits and 

vegetables, showcasing the potential for improved quality 

control and evaluation in the agricultural industry. 

III. METHODOLOGY 

This section of the paper focuses on detailed steps of the 
project which includes Image Acquisition, Image 
Preprocessing, Morphological Image Operations, Image 
Segmentation and valid Blobs Detection, and Dimensional 
Analysis and Filtering. The detailed explanation of each step 
is illustrated below: - 
 

A. Image Acquisition: - 

[123 word] Since this project is focused on Dimensional 
Analysis for Manufacturing or Production we have 
chosen “Food Production” to apply the developed system. 
Capturing high-resolution images of 
manufactured/production objects using appropriate 
imaging techniques and equipment with consistent 
lighting conditions are highly time consuming and hard to 
get access with the given context for the project under this 
Module. Therefore, we used DALL·E 2 developed by 
OpenAI to generate the required dataset for the project 
with desired environment conditions. 

 DALL·E 2 is an AI system that can create realistic images 
and art from a description in natural language. URL: 
https://openai.com/dall-e-2 
 
 We focused on Generating two types of Datasets: 
Blueberries Production and Potato Chips Manufacturing. 
Few Samples of Datasets looks like as shown in Fig 1,2,3,4.  
 

 
Figure 1 Blueberries data set image sample 

 

https://openai.com/dall-e-2


 
Figure 2 Sample of blueberries dataset image 

 

 
Figure 3 Sample image of Potato-Chips on Dataset 

 

 
Figure 4 Another Sample of Potato Chips on Dataset 

 
 

B. Image Preprocessing. 

 [365 word] After we obtain the image, we will process the 
image further. The purpose of image preprocessing is to 
enhance the image quality, remove noise, correct distortions, 
and extract relevant features, making it more suitable for 
subsequent tasks such as object detection, recognition, or 
image analysis. The detailed steps for image processing are 
given below: - 
 

1) Grayscale Conversion: - 

  The first step of the Image Processing is the Gray Scale 

Conversion. In OpenCV, grayscale conversion is achieved by 

using the cv2.cvtColor() function with the parameter 

cv2.COLOR_BGR2GRAY. This function takes a color 

image as input and returns a single-channel grayscale image 

where each pixel value represents the intensity of the 

corresponding pixel in the original image.  
 

2) Noise Removal and Contrast Enhancement:- 

  Secondly, the grayscale image is subjected to the Noise 

Removal step and goes through the Contrast Enhancement. 

Median blur and Gaussian blur are both image filtering 

techniques used for noise reduction and image smoothing in 

image processing[5]. Each technique applies a kernel or a 

window over the image to calculate the filtered pixel value 

based on neighboring pixels. 

  Contrast enhancement enhances the contrast of the images 

using histogram equalization to improve the visibility of the 

components or features. Histogram equalization, as done in 

OpenCV using enhanced_image = cv2.equalizeHist(blurred), 

is performed to enhance the contrast of the blurred image. By 

redistributing the pixel intensities across the entire range, 

histogram equalization stretches the intensity values, making 

the image visually more vibrant and improving the visibility 

of details in different regions. 

 The implementation of these steps in code is illustrated 

below: - 

def preprocess(gray, blur, enhance): 
     
    enhanced_image = None 
     
    # Noise Filtering based on the Filter 
    if blur == "gaussian": 
        # Apply Gaussian blur to reduce noise 
        enhanced_image = cv2.GaussianBlur(gray, 
(11, 11), 0) 
    elif blur == "median": 
        # Apply Median blur to reduce noise 
        enhanced_image = cv2.medianBlur(gray, 11) 
     
    if enhance: 
        # Contrast Enhancement 
        enhanced_image = 
cv2.equalizeHist(blurred)  # Apply histogram 
equalization for contrast enhancement 
 
    return enhanced_image 
 

In summary, the "preprocess" function takes a grayscale 

image and applies noise filtering (Gaussian blur or Median 

blur) based on the "blur" parameter. Optionally, it enhances 

the image's contrast using histogram equalization, based on 

the "enhance" parameter. The resulting preprocessed and, if 

specified, enhanced image is then returned. 

3) Binarization/Thresholding. 

  Global thresholding and adaptive thresholding are image 

binarization techniques tested for this application to separate 

the foreground objects (components of interest) from and 

background regions based on pixel intensities. Global 

thresholding is selected for our application because the 



images have consistent (controlled environment) foreground 

and background intensities across the entire image. It is 

computationally efficient and straightforward to implement. 

 

The implementation of thresholding is as given below: - 

 
# Performed thresholding on the blurred image to 
create a binary image using cv2.threshold().  
# segment the foreground objects from the 
background. 
 
# Apply Global Thresholding 
def binary_threshold(image, threshold_value): 
 
    # Apply binary thresholding 
    _, binary_image = cv2.threshold(image, 
threshold_value, 255, cv2.THRESH_BINARY_INV) 
 
    return binary_image 
 
# Apply Adaptive Thresholding 
def adaptive_threshold(image, block_size, 
constant): 
 
    # Apply adaptive thresholding 
    binary_image = cv2.adaptiveThreshold(image, 
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                         cv2.THRE
SH_BINARY_INV, block_size, constant) 
 
    return binary_image 

     
 

C. Morphological Image Operations: 

 

 [206 word] The following Morphological Processing 

Techniques were used to fill the holes in the blobs, separate 

the blobs from each other and to alter the shapes of blobs as 

required. 

 

Morphological Closing: Morphological closing is an 

operation that combines dilation followed by erosion. It is 

used to fill gaps in the detected blobs and smooth the blobs. 

In this application, a square-shaped kernel of size (11, 11) is 

used for the closing operation. The cv2.morphologyEx() 

function is applied with cv2.MORPH_CLOSE as the 

operation type. 

 

Morphological Erosion: Morphological erosion is an 

operation that reduces the size of bright regions (white areas 

in this case). It helps distinguish blobs that are close to each 

other. In this application, a smaller square-shaped kernel of 

size (3, 3) is used for the erosion operation. The cv2.erode() 

function is applied with iterations=1 to perform one iteration 

of erosion. 

 

Morphological Dilation: Morphological dilation is an 

operation that increases the size of bright regions. It is used 

here to fill small gaps inside each blob, which might have 

occurred due to thresholding or erosion. In this application, a 

larger square-shaped kernel of size (5, 5) is used for the 

dilation operation. The cv2.dilate() function is applied with 

iterations=1 to perform one iteration of dilation. 

 

The implementation of each step i.e., closing, erosion, 

dilation is given in the form of python code: -  

 
def morphology(thresh, cl_ker, er_ker, di_ker): 
    # Perform morphological closing to fill gaps 
and smooth the blobs 
    kernel = np.ones((cl_ker, cl_ker), np.uint8) 
    closing = cv2.morphologyEx(thresh, 
cv2.MORPH_CLOSE, kernel) 
 
    # Perform morphological erosion to 
distinguish blobs 
    kernel_erosion = np.ones((er_ker, er_ker), 
np.uint8) 
    erosion = cv2.erode(closing, kernel_erosion, 
iterations=1) 
 
    # Perform morphological dilation to fill 
small gaps inside each blob 
    kernel_dilation = np.ones((di_ker, di_ker), 
np.uint8) 
    dilation = cv2.dilate(erosion, 
kernel_dilation, iterations=1) 
 
    # Set the Processed Image for Connected 
SComponent Analysis 
    processed_img = closing 
     
    return processed_img 

 

 
Figure 5 Steps for blob Detection 

 

D. Image Segmentation and valid Blobs Detection. 

 

  [72 Word] The Segmentation of the foreground objects from 

the background is executed in the following order as shown 

in fig. 5.  

 

A Valid blob is considered based on the application criteria 

by defining a minimum area to be eligible for a valid blob for 

the specific application. The Minimum Area for valid 

detection is configurable via command line arguments. The 

measurement metrics and filtering of these blobs are 

discussed in the next section. 

 

E. Dimensional Analysis and Filtering. 

 [220 word] The End goal of the application is to perform the 

Dimensional Analysis and Filtering of the objects to evaluate 

certain statistics and information about the production or 

Manufacturing, report the evaluations or visualize them. 

 



Statistical Analysis, Reporting, and Visualization: Perform 

statistical analysis on the collected dimensional 

measurements to evaluate variations, trends, and 

distributions. Generate reports or visual representations 

summarizing the dimensional analysis results, such as 

statistical charts, histograms, or control charts, to present the 

measured dimensions, deviations, and trends. 

 

The following measurements were obtained during the 

analysis. 

A. Area Calculation: Measured the area of each selected blob, 

representing the size or extent of the component. 

 

B. Perimeter Calculation: Measured the perimeter of each 

blob, representing the boundary length. 

 

C. Centroid Calculation: Determined the centroid (center of 

mass) of each blob, providing the spatial position 

information. 

 

D. Bounding Box Calculation: Determine the bounding box 

dimensions of each blob, enclosing the component within a 

rectangular box. 

 

For this demonstration using a batch of blueberries, the 

following simple filtering criteria is defined: 

 

i. Threshold value to detect Oversized blueberries. 

(Configurable via command line) 

ii. Threshold value to detect Undersized blueberries. 

(Configurable via command line) 

 

Analyzed the measured dimension (Area) to assess their 

compliance with the specified tolerances. Compare the 

measurements against predefined criteria or dimensional 

specifications to determine whether the product meets quality 

control standards. 

 

The code implementation for the blob detection, dimensional 

analysis, and filtering: 

 
def detectAndMeasure(org_img, proc_img, blobMin, 
filtMax, filtMin): 
     
    # Count the objects which satisfies the constraints 
    filt_stats = { 
        "tot_valid_blobs": 0, 
        "tot_under_Sized": 0, 
        "tot_over_Sized" : 0, 
        "percent_under":0, 
        "percent_over":0, 
    } 
 
    # Perform connected component analysis 
    num_labels, labels, stats, centroids = 
cv2.connectedComponentsWithStats(proc_img, 
connectivity=8) 
 
    # Print Total Number of Blobs Detected 
    print(f"Total Blobs Count: {num_labels}") 
 
    # Define the minimum and maximum area thresholds to 
filter the blobs (adjust these values as needed) 
    min_area_threshold = blobMin 
 
    # Define the Filtering Blob Size for Measurement 
Analysis 

    over_sized = filtMax 
    under_sized = filtMin 
 
    # Copy the original image for different markings 
    org_img_copy = org_img.copy() 
     
    # Loop through each detected blob 
    for label in range(1, num_labels):  # Start from 1 
to exclude the background label 0 
        area = stats[label, cv2.CC_STAT_AREA] 
 
        # Check if the area is within the specified 
range 
        if min_area_threshold < area: 
             
            filt_stats["tot_valid_blobs"] += 1 
 
            # Get the bounding box coordinates for the 
blob 
            x, y, w, h = stats[label, 
cv2.CC_STAT_LEFT], stats[label, cv2.CC_STAT_TOP], \ 
                        stats[label, 
cv2.CC_STAT_WIDTH], stats[label, cv2.CC_STAT_HEIGHT] 
 
            # Draw the bounding box around the blob 
based on Filtered Criteria 
 
            # Mark All the blobs valid except 
background 
            cv2.rectangle(org_img_copy, (x, y), (x + w, 
y + h), (0, 0, 0), 2) 
             
            # Mark Bounding Box complying Filtering 
Condition 
            if  area < under_sized: 
                filt_stats["tot_under_Sized"] +=1 
                # Identify with BLUE bounding box 
                cv2.rectangle(org_img, (x, y), (x + w, 
y + h), (255, 0, 0), 2) 
            elif area >= over_sized: 
                filt_stats["tot_over_Sized"] +=1 
                # Identify with RED bounding box 
                cv2.rectangle(org_img, (x, y), (x + w, 
y + h), (0, 0, 255), 2) 
            else: 
                # Identify with GREEN bounding box 
                cv2.rectangle(org_img, (x, y), (x + w, 
y + h), (0, 255, 0), 2) 
 
            # Print the area of the blob 
            #print(f"Blob {label}: Area = {area} 
pixels") 
             
     
    # Calculate the Percentage of Over and Under Sized 
batching 
    if filt_stats["tot_valid_blobs"] > 0 : 
        filt_stats["percent_under"] = 
round((filt_stats["tot_under_Sized"]/filt_stats["tot_va
lid_blobs"])*100, 2) 
        filt_stats["percent_over"] = 
round((filt_stats["tot_over_Sized"]/filt_stats["tot_val
id_blobs"])*100, 2) 
    else: 
        filt_stats["percent_under"] = 0 
        filt_stats["percent_over"] = 0 
     
    return org_img_copy, org_img, filt_stats 

IV. RESULTS. [900 WORDS] 

 

A. Grayscale Conversion: 

 
Input Image: 



 
Figure 6 Original Input Image RGB 

Output Image: 

 
Figure 7 Grayscale Converted Image 

Grayscale conversion involves converting a color image 
(commonly represented in the RGB color space) into a single-
channel grayscale image. The grayscale image represents the 
intensity of each pixel, ranging from 0 (black) to 255 (white).  
 
It’s observed that Each pixel in the grayscale image carries 
only one value that corresponds to the brightness of the 
corresponding pixel in the color image. 
 

B. Noise Removal and Contrast Enhancement: 

Output: 
 

 
Figure 8 Noise Removed, Enhanced Image 

 
 

We can see the foreground objects are smoother and more 

blurred after noise filtering. The application tested both types 

of blurring and selected Median blurring for the application 

because it effectively removes salt-and-pepper noise while 

preserving the edges and features of the objects being 

analyzed.  

 

Unlike Gaussian blur, which may blur edges and boundaries, 

median blur replaces noisy pixels with the median value of 

the neighborhood, ensuring that extreme values caused by 

noise do not affect the overall analysis. 
 

By incorporating noise removal and contrast enhancement in 

image processing applications, the resulting images are 

cleaner, more visually appealing, and better suited for 

subsequent analysis tasks, such as object detection, 

segmentation, and feature extraction. 

 

C. Binarzation/Thresholding:  

Output: 

 

 
Figure 9 Thresholded Image - Global 

 

 
Figure 10 Thresholded Image – Adaptive 

We have tested both Global thresholding and adaptive 

thresholding for image binarization to separate foreground 

objects from background regions based on pixel intensities. 

 

Global Thresholding observations: 

• Foreground objects are preserved more. 

• Simple method using a single threshold value for the 

entire image. 

• Assigns pixels below the threshold to the 

background and above to the foreground. 

• Suitable for images with uniform lighting and 

consistent foreground-background separation. 

Adaptive Thresholding Observations: 

• Edges are preserved better than global thresholding, 

but the inner body is more eroded than global 

thresholding. 



• Calculates different threshold values for different 

regions of the image. 

• Considers local pixel intensity variations by 

dividing the image into smaller regions. 

• Effective for images with lighting variations, 

shadows, or uneven backgrounds. 

 

Therefore, Global thresholding is chosen due to the images 

having consistent foreground-background intensities in a 

controlled environment. It offers computational efficiency 

and easy implementation. 

 

D. Morphological Image Operations: 

Input Image: 

 
Figure 11 Input image for Morphological processing 

Output Image: 

 
Figure 12 Output image after Morphological Processing 

From the output image we can observe that the holes and non-

uniformities from the thresholding are recovered from the 

morphological processing.  

 

The following Morphological Processing Techniques are 

utilized for the application.  

 

Morphological closing, achieved through dilation followed 

by erosion using an 11x11 square-shaped kernel, is employed 

to fill gaps in blobs and smoothen their boundaries.  

 

Morphological erosion with a smaller 3x3 square kernel 

reduces the size of bright regions, aiding in distinguishing 

closely positioned blobs.  

 

On the other hand, morphological dilation, employing a 

larger 5x5 square kernel, enlarges bright regions to fill small 

gaps within blobs caused by thresholding or erosion. 

 

By employing morphological closing, erosion, and dilation in 

sequence, the accuracy of blob detection and the separation 

of adjacent blobs are significantly improved. Morphological 

closing fills gaps and smooths blobs, erosion aids in 

distinguishing closely connected blobs, and dilation ensures 

that small gaps within each blueberry are filled, leading to 

more precise and accurate detection of individual blobs in the 

final output. 

 

E. Image Segmentation and valid Blobs Detection:  

 

 
Figure 13 Blobs detected and added bounding boxes. 

Bounding boxes of black color were calculated and masked 

on top of the original image to verify the blob detection and 

bounding box calculations.  

 

Each blob marked with bounding boxes is segmented from 

the background in a stepwise manner. First, thresholding is 

applied to convert the preprocessed image into a binary image 

based on intensity, using either global or adaptive 

thresholding. Next, morphological processing is performed, 

including closing, erosion, and dilation, to enhance blob 

detection accuracy and separate adjacent blobs.  

 

Connected component analysis is then conducted on the 

binary image to identify and label individual blobs or regions 

of interest. A blob is considered valid based on application 

criteria, with a minimum area threshold that can be 

configured via command-line arguments. 

 

 

 

 

F. Dimensional Analysis and Filtering. 

 

The aim of the application is to conduct dimensional analysis 

and filtering of objects to assess specific statistics and 

manufacturing information. This involves performing 

statistical analysis on collected dimensional measurements to 

identify variations, trends, and distributions. The results are 

then presented through reports or visual representations like 



statistical charts, histograms, or control charts to showcase 

the measured dimensions, deviations, and trends. 

 

Statistical Analysis Output: 

 

 
Figure 14 Statistical Analysis output 

 

 

Visualization: Filtered Blobs 

 

 
Figure 15 Visualization of Filtered Blobs 

Observation: 

• Undersized blobs: Blue bounding Box. 

• Oversized blobs: Red bounding Box 

• Acceptable range Blobs: Green bounding box.  

 

For this demonstration using a batch of blueberries, the 

following simple filtering criteria is defined: 

• Threshold value to detect Oversized blueberries. 

(Configurable via command line) 

• Threshold value to detect Undersized blueberries. 

(Configurable via command line) 

 

Analyzed the measured dimension (Area) to assess their 

compliance with the specified tolerances. Compare the 

measurements against predefined criteria or dimensional 

specifications to determine whether the product meets quality 

control standards. 

 

G. Unsuccessful Result. 

 

 
Figure 16 unsuccessful blob detection 

 
Figure 17 Unsuccessful measurement Analysis 

While testing a batch of potato chips, we faced unsuccessful 
blob detection which results in false measurement analysis. 
The issue occurred when the segmentation process fails to 
accurately separate neighboring chips due to improper 
thresholding and morphological processing. This failure lead 
to connected components, where adjacent chips become 
fused together into a single blob during connected component 
analysis. 
The issue of improper segmentation may arise in cases where 
the intensity or color variations between neighboring chips 
are subtle, making it difficult for the thresholding technique 
to distinguish them effectively. As a result, a single threshold 
value might not be sufficient to differentiate adjacent chips, 
causing them to be grouped together as a single object during 
connected component analysis. 
Additionally, the application of morphological operations, 
such as dilation and erosion, can further exacerbate the 
problem if the kernel sizes are not appropriately chosen. 
Incorrect kernel sizes may cause neighboring chips to merge 
or erode, leading to distorted or fused blob shapes. 
Due to the merging of neighboring chips during the 
segmentation process, filtering criteria based on blob size or 
shape might not be effectively applied. Consequently, the 
measurement and analysis of individual chips' dimensions 
become unreliable, potentially impacting the quality control 
assessments and batch evaluation for manufacturing. 
 

               V. Conclusion: -  

  [465 Words] The implemented dimensional analysis for 
quality control in manufacturing using blob detection, 
focusing on image processing techniques such as noise 
reduction, thresholding, morphological operations, and 
image segmentation, has demonstrated both effectiveness and 
limitations.  

  In scenarios where objects are well-separated and lighting 
conditions are favorable, the effectiveness of the project 
becomes evident. The blob detection algorithm accurately 
and reliably identifies the relevant components or features, 
enabling precise dimensional analysis. This success is 
particularly pronounced in datasets with spherical objects, 
such as blueberries, where the distinctive shapes and 
sufficient spacing between each object facilitate accurate 
blob detection and dimensional measurements. 



  The successful parameter ranges identified during the 
project contribute significantly to the robustness and 
accuracy of the dimensional analysis. The best global 
thresholding range of 135 to 150 has proven to be effective in 
segmenting objects from the background and generating 
binary images suitable for further processing. 

  The choice of parameter values for morphological 
operations has been critical in ensuring precise blob 
detection. The median filter with a kernel size of 11 
effectively reduced noise and improved the quality of the 
preprocessed images. A closing kernel size of 11x11 and a 
dilation kernel size of 5 assisted in filling gaps and restoring 
blob shapes, respectively. Additionally, an erosion kernel 
size of 3 helped to smooth the blob contours. 

  However, it is worth noting that the segmentation approach 
faced challenges in cases where objects overlapped with each 
other or when the lighting conditions were poor. These 
challenging scenarios led to a degradation in the performance 
of the segmentation technique, resulting in inaccuracies in 
blob detection and potentially impacting the dimensional 
analysis results. Despite these limitations, the project has 
successfully demonstrated the practicality and relevance of 
employing image processing techniques in quality control for 
manufacturing. 

One of the project's strengths lies in its ability to address noise 
artifacts effectively. By setting the minimum size (area) for a 
valid blob, such as 1000 pixels in this case, the system 
efficiently filtered out small noise artifacts and ensured that 
only significant blobs were considered during the analysis. 
This filtering mechanism enhanced the reliability of the 
dimensional analysis by focusing on meaningful components 
while reducing the impact of undesired artifacts. Thus, the 
incorporation of the minimum size criterion has proved to be 
valuable in improving the accuracy and validity of the 
measured dimensional data. 

  In conclusion, the dimensional analysis for quality control 
in manufacturing using blob detection and image processing 
techniques has proven effective within certain conditions and 
parameter ranges. While the project successfully automates 
dimensional analysis and defect detection, further 
improvements are possible by addressing challenges related 
to object overlapping and varying lighting conditions. This 
work sets the foundation for enhancing quality control 
practices in manufacturing industries, opening avenues for 
future research in developing more robust and adaptable 
image processing algorithms. 
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