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Abstract— [229 Word] The report presents a robust
implementation of dimensional analysis for quality control in
manufacturing and production industries using advanced blob
detection techniques. The project leverages OpenCV, a
powerful computer vision library, to process manufacturing
images and extract essential dimensional information. The
methodology encompasses image acquisition, preprocessing,
morphological operations, image segmentation, and blob
detection to identify and measure components in the images.
The image preprocessing stage involves converting images to
grayscale and applying noise reduction and contrast
enhancement techniques to ensure cleaner and more reliable
data. Morphological operations, including closing, erosion, and
dilation, further enhance blob detection accuracy. Image
segmentation techniques, like connected component analysis,
efficiently identify and label individual blobs or regions of
interest. Subsequently, dimensional analysis measures crucial
blob characteristics, such as area, perimeter, centroid, and
bounding box, to evaluate compliance with specified tolerances,
ensuring product quality and consistency. While the
segmentation approach encountered challenges in overlapping
object scenarios and poor lighting conditions, the project
effectively addresses such issues by implementing a minimum-
size filtering mechanism to eliminate noise artifacts. Overall,
this implementation of dimensional analysis contributes to
better quality control practices in manufacturing industries by
automating defect detection and dimensional analysis, reducing
human errors in inspection tasks, and enhancing product
consistency. The report showcases the step-by-step
implementation and presents the results of the dimensional
analysis, highlighting the project's effectiveness and practicality
in improving quality control in manufacturing processes.

Index Terms— Image Acquisition, Image Processing, blob
detection, Segmentation.

l. INTRODUCTION

[230 Words] In manufacturing industries, dimensional
analysis plays a crucial role in ensuring product quality and
conformity to specifications. However, performing
dimensional analysis manually is time-consuming and error
prone. Automating this process plays a critical role in mass
scaling production.

This challenge aims to develop an image processing
solution using blob detection techniques to automate
dimensional analysis for quality control in manufacturing.
The objective is to preprocess the images, apply
morphological image operations for noise reduction, perform
image segmentation to identify individual objects, measure
the dimensions of blobs accurately, and analyze them in
accordance with predefined specifications. By automating
this process, manufacturers can improve efficiency, reduce
errors, and maintain consistent quality standards.

The challenge lies in accurately detecting and measuring
complex blob shapes, dealing with variations in lighting and
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background, and handling potential image noise and artifacts.
Some of the Potential Applications are given below: -

1.  Food Production: The solution can be used in food
production for baked goods, packaged food items, and
fruits/vegetables, ensuring consistent portion  sizes,
packaging integrity, and product quality.

2. Pharmaceutical Industry: The solution can analyze
the dimensions of tablets and capsules, including their
diameter, thickness, and shape consistency.

3. Consumer Goods Manufacturing: The solution can
be used for quality control in the production of bottles, cans,
and packaging materials. It can measure parameters such as
diameter, height, and thickness of these containers, ensuring
consistent sizes, shapes, and structural integrity.

Il. LITERATURE REVIEW

[750 Words] Several relevant works were cited in this field.
We reviewed some of the work and summarized it in detail.

1. “A Real-Time Approach for Automatic Food Quality

Assessment Based on Shape Analysis” [1]:

The journal titled "A Real-Time Approach for Automatic
Food Quality Assessment Based on Shape Analysis™ by Luca
Donati, Eleonora lotti, and Andrea Prati addresses the
importance of accurate product sorting in the agricultural
industry. The authors highlight the significance of quality
control measures to prevent the wastage of good products and
ensure the proper disposal of rotten, broken, or deformed
food items. They emphasize that existing sorting systems
primarily rely on color information, which may not be
sufficient to detect certain common defects. In contrast, the
shape of a product can reveal important defects and is highly
reliable in detecting foreign objects mixed with food.
Moreover, shape analysis enables detailed measurements of
a product, such as its area, length, width, and anisotropy. The
paper proposes a comprehensive solution for sorting food
based on shape analysis, considering real-world challenges
such as accuracy, execution time, and latency. It provides an
overview of a complete system implemented on advanced
measurement machines, addressing the need for reliable and
efficient food sorting based on shape characteristics.

2. “Smart manufacturing applications for inspection and

quality assurance processes” [2]:

The conference paper titled "Smart manufacturing
applications for inspection and quality assurance processes"
by Maremys Galindo-Salcedo, Altagracia Pertiz-Moreno,
Stefania Guzman-Castillo, Yulineth Gdémez-Charris, and
Alfonso R. Romero-Conrado discusses the significant impact
of smart manufacturing on inspection and quality assurance
processes, specifically focusing on innovative technologies in



machine learning. The paper presents a systematic review of
automation applications in statistical quality control within
industrial companies. The subtopics covered include artificial
vision, intelligent manufacturing, inspection across various
production processes, neural networks, automation using
statistical process control techniques, and quality assurance.
The authors analyze these technologies, highlighting their
ability to improve automated manufacturing processes by
enhancing efficiency, performance, and productivity.
Furthermore, these technologies contribute to time
optimization, cost reduction, strengthened inspection
procedures, and quality assurance. The paper concludes by
identifying future research opportunities for industrial
applications in the field.

3. “Segmentation Techniques for Rotten Fruit

detection” [3]:

The conference paper titled "Segmentation Techniques
for Rotten Fruit Detection” by K. Roy, S. S. Chaudhuri, S.
Bhattacharjee, S. Manna, and T. Chakraborty focuses on the
development of segmentation techniques for the detection of
rotten vegetables. The authors highlight the importance of
automating the sorting process to distinguish between fresh
and rotten vegetables, addressing potential health risks
associated with consuming rotten produce. The paper
presents three segmentation techniques: Marker-Based
Segmentation, Color-Based Segmentation, and Edge
Detection. These techniques effectively identify and isolate
the rotten portions of vegetables, enabling the separation of
unhealthy vegetables from the good ones. By implementing
an automated system that incorporates these segmentation
techniques, the sorting process for food product
manufacturing units can be significantly improved in terms
of time, manpower, and accuracy. The proposed techniques
underwent a multi-level analysis and were evaluated using
sets of images containing both healthy and rotten vegetables.
The experimental results validate the efficacy of the
suggested segmentation techniques for detecting and sorting
rotten vegetables, thereby enhancing food safety and quality
assurance processes.

4. “Advances in Machine Vision Applications for
Automatic Inspection and Quality Evaluation of Fruits
and Vegetables” [4]:

The journal titled "Advances in Machine Vision
Applications for Automatic Inspection and Quality
Evaluation of Fruits and Vegetables" by C. Sergio, A. Nuria,
M. Enrique, G.-S. Juan, and B. Jose discusses the
advancements in artificial vision systems for the automatic
inspection and quality evaluation of fruits and vegetables.
The authors highlight the various applications of these
systems, including grading, quality estimation based on
external parameters or internal features, monitoring fruit
processes during storage, and evaluating experimental
treatments. Avrtificial vision systems offer capabilities beyond
human capacity, allowing for objective evaluation of long-
term processes and detection of events outside the visible
electromagnetic spectrum. By utilizing ultraviolet or near-
infrared spectra, these systems can explore defects or features
that are invisible to the human eye. Hyperspectral systems
provide detailed information about individual components or
damage, enabling the development of new computer vision

systems tailored to specific objectives. In-line grading
systems can inspect large quantities of fruit or vegetables
individually, providing statistical data about the entire batch.
Overall, artificial vision systems not only replace human
inspection but also enhance its capabilities. This work
presents the latest developments in applying this technology
to inspecting the internal and external quality of fruits and
vegetables, showcasing the potential for improved quality
control and evaluation in the agricultural industry.

"I. METHODOLOGY
This section of the paper focuses on detailed steps of the
project which includes Image Acquisition, Image

Preprocessing, Morphological Image Operations, Image
Segmentation and valid Blobs Detection, and Dimensional
Analysis and Filtering. The detailed explanation of each step
is illustrated below: -

A. Image Acquisition: -
[123 word] Since this project is focused on Dimensional
Analysis for Manufacturing or Production we have
chosen “Food Production” to apply the developed system.
Capturing high-resolution images of
manufactured/production objects using appropriate
imaging techniques and equipment with consistent
lighting conditions are highly time consuming and hard to
get access with the given context for the project under this
Module. Therefore, we used DALL-E 2 developed by
OpenAl to generate the required dataset for the project
with desired environment conditions.
DALL-E 2 isan Al system that can create realistic images

and art from a description in natural language. URL.:

https://openai.com/dall-e-2

We focused on Generating two types of Datasets:
Blueberries Production and Potato Chips Manufacturing.
Few Samples of Datasets looks like as shown in Fig 1,2,3,4.

Figure 1 Blueberries data set image sample


https://openai.com/dall-e-2

Figure 3 Sample image of Potato-Chips on Dataset

Rt A
coocoo0
CeIDP I

CePP DD
COQOIOS

Figure 4 Another Sample of Potato Chips on Dataset

B. Image Preprocessing.

[365 word] After we obtain the image, we will process the
image further. The purpose of image preprocessing is to
enhance the image quality, remove noise, correct distortions,
and extract relevant features, making it more suitable for
subsequent tasks such as object detection, recognition, or
image analysis. The detailed steps for image processing are
given below: -

1) Grayscale Conversion: -

The first step of the Image Processing is the Gray Scale
Conversion. In OpenCV, grayscale conversion is achieved by
using the cv2.cvtColor() function with the parameter
cv2.COLOR_BGR2GRAY. This function takes a color
image as input and returns a single-channel grayscale image
where each pixel value represents the intensity of the
corresponding pixel in the original image.

2)  Noise Removal and Contrast Enhancement:-

Secondly, the grayscale image is subjected to the Noise
Removal step and goes through the Contrast Enhancement.
Median blur and Gaussian blur are both image filtering
techniques used for noise reduction and image smoothing in
image processing[5]. Each technique applies a kernel or a
window over the image to calculate the filtered pixel value
based on neighboring pixels.

Contrast enhancement enhances the contrast of the images
using histogram equalization to improve the visibility of the
components or features. Histogram equalization, as done in
OpenCV using enhanced_image = cv2.equalizeHist(blurred),
is performed to enhance the contrast of the blurred image. By
redistributing the pixel intensities across the entire range,
histogram equalization stretches the intensity values, making
the image visually more vibrant and improving the visibility
of details in different regions.

The implementation of these steps in code is illustrated
below: -

def preprocess(gray, blur, enhance):
enhanced_image = None

# Noise Filtering based on the Filter

if blur == "gaussian":
# Apply Gaussian blur to reduce noise
enhanced_image = cv2.GaussianBlur(gray,

(11, 11), °)

elif blur == "median":
# Apply Median blur to reduce noise
enhanced_image = cv2.medianBlur(gray, 11)

if enhance:
# Contrast Enhancement
enhanced_image =
cv2.equalizeHist(blurred) # Apply histogram
equalization for contrast enhancement

return enhanced_image

In summary, the "preprocess” function takes a grayscale
image and applies noise filtering (Gaussian blur or Median
blur) based on the "blur" parameter. Optionally, it enhances
the image's contrast using histogram equalization, based on
the "enhance" parameter. The resulting preprocessed and, if
specified, enhanced image is then returned.

3) Binarization/Thresholding.

Global thresholding and adaptive thresholding are image
binarization techniques tested for this application to separate
the foreground objects (components of interest) from and
background regions based on pixel intensities. Global
thresholding is selected for our application because the



images have consistent (controlled environment) foreground
and background intensities across the entire image. It is
computationally efficient and straightforward to implement.

The implementation of thresholding is as given below: -

# Performed thresholding on the blurred image to
create a binary image using cv2.threshold().

# segment the foreground objects from the
background.

# Apply Global Thresholding
def binary_threshold(image, threshold_value):

# Apply binary thresholding
_, binary_image = cv2.threshold(image,
threshold_value, 255, cv2.THRESH_BINARY_INV)

return binary_image

# Apply Adaptive Thresholding
def adaptive_threshold(image, block_size,
constant):

# Apply adaptive thresholding
binary_image = cv2.adaptiveThreshold(image,
255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,

cv2.THRE
SH_BINARY_INV, block_size, constant)
return binary_image
C. Morphological Image Operations:
[206 word] The following Morphological Processing

Techniques were used to fill the holes in the blobs, separate
the blobs from each other and to alter the shapes of blobs as
required.

Morphological Closing: Morphological closing is an
operation that combines dilation followed by erosion. It is
used to fill gaps in the detected blobs and smooth the blobs.
In this application, a square-shaped kernel of size (11, 11) is
used for the closing operation. The cv2.morphologyEx()
function is applied with cv2.MORPH_CLOSE as the
operation type.

Morphological Erosion: Morphological erosion is an
operation that reduces the size of bright regions (white areas
in this case). It helps distinguish blobs that are close to each
other. In this application, a smaller square-shaped kernel of
size (3, 3) is used for the erosion operation. The cv2.erode()
function is applied with iterations=1 to perform one iteration
of erosion.

Morphological Dilation: Morphological dilation is an
operation that increases the size of bright regions. It is used
here to fill small gaps inside each blob, which might have
occurred due to thresholding or erosion. In this application, a
larger square-shaped kernel of size (5, 5) is used for the
dilation operation. The cv2.dilate() function is applied with
iterations=1 to perform one iteration of dilation.

The implementation of each step i.e., closing, erosion,
dilation is given in the form of python code: -

def morphology(thresh, cl_ker, er_ker, di_ker):
# Perform morphological closing to fill gaps
and smooth the blobs
kernel = np.ones((cl_ker, cl_ker), np.uint8)
closing = cv2.morphologyEx(thresh,
Ccv2.MORPH_CLOSE, kernel)

# Perform morphological erosion to
distinguish blobs

kernel_erosion = np.ones((er_ker, er_ker),
np.uint8)

erosion = cv2.erode(closing, kernel_erosion,
iterations=1)

# Perform morphological dilation to fill
small gaps inside each blob

kernel_dilation = np.ones((di_ker, di_ker),
np.uint8)

dilation = cv2.dilate(erosion,
kernel_dilation, iterations=1)

# Set the Processed Image for Connected
SComponent Analysis

processed_img = closing

return processed_img

e ©

Figure 5 Steps for blob Detection

D. Image Segmentation and valid Blobs Detection.

[72 Word] The Segmentation of the foreground objects from
the background is executed in the following order as shown
in fig. 5.

A Valid blob is considered based on the application criteria
by defining a minimum area to be eligible for a valid blob for
the specific application. The Minimum Area for valid
detection is configurable via command line arguments. The
measurement metrics and filtering of these blobs are
discussed in the next section.

E. Dimensional Analysis and Filtering.

[220 word] The End goal of the application is to perform the
Dimensional Analysis and Filtering of the objects to evaluate
certain statistics and information about the production or
Manufacturing, report the evaluations or visualize them.



Statistical Analysis, Reporting, and Visualization: Perform
statistical analysis on the collected dimensional
measurements to evaluate variations, trends, and
distributions. Generate reports or visual representations
summarizing the dimensional analysis results, such as
statistical charts, histograms, or control charts, to present the
measured dimensions, deviations, and trends.

The following measurements were obtained during the
analysis.

A. Area Calculation: Measured the area of each selected blob,
representing the size or extent of the component.

B. Perimeter Calculation: Measured the perimeter of each
blob, representing the boundary length.

C. Centroid Calculation: Determined the centroid (center of
mass) of each blob, providing the spatial position
information.

D. Bounding Box Calculation: Determine the bounding box
dimensions of each blob, enclosing the component within a
rectangular box.

For this demonstration using a batch of blueberries, the
following simple filtering criteria is defined:

i Threshold value to detect Oversized blueberries.
(Configurable via command line)

il Threshold value to detect Undersized blueberries.
(Configurable via command line)

Analyzed the measured dimension (Area) to assess their
compliance with the specified tolerances. Compare the
measurements against predefined criteria or dimensional
specifications to determine whether the product meets quality
control standards.

The code implementation for the blob detection, dimensional
analysis, and filtering:

def detectAndMeasure(org_img, proc_img, blobMin,
filtMax, filtMin):

# Count the objects which satisfies the constraints
filt_stats = {

"tot_valid_blobs": 0,

"tot_under_Sized": 0,

"tot_over_Sized" : 0,

"percent_under":0,

"percent_over":0,

}

# Perform connected component analysis

num_labels, labels, stats, centroids =
cv2.connectedComponentsWithStats(proc_img,
connectivity=8)

# Print Total Number of Blobs Detected
print(f"Total Blobs Count: {num_labels}")

# Define the minimum and maximum area thresholds to
filter the blobs (adjust these values as needed)
min_area_threshold = blobMin

# Define the Filtering Blob Size for Measurement
Analysis

over_sized = filtMax
under_sized = filtMin

# Copy the original image for different markings
org_img_copy = org_img.copy()

# Loop through each detected blob
for label in range(1l, num_labels):

to exclude the background label ©
area = stats[label, cv2.CC_STAT_AREA]

# Start from 1

# Check if the area is within the specified

range
if min_area_threshold < area:
filt_stats["tot_valid_blobs"] += 1
# Get the bounding box coordinates for the
blob

X, Y, W, h = stats[label,
cv2.CC_STAT_LEFT], stats[label, cv2.CC_STAT_TOP], \
stats[label,
cv2.CC_STAT_WIDTH], stats[label, cv2.CC_STAT_HEIGHT]

# Draw the bounding box around the blob
based on Filtered Criteria

# Mark All the blobs valid except
background

cv2.rectangle(org_img_copy, (X, y), (X + w,
y + h), (e, 0, @), 2)

# Mark Bounding Box complying Filtering
Condition
if area < under_sized:
filt_stats["tot_under_Sized"] +=1
# Identify with BLUE bounding box
cv2.rectangle(org_img, (x, y), (X + w,
y + h), (255, @, 0), 2)
elif area >= over_sized:
filt_stats["tot_over_Sized"] +=1
# Identify with RED bounding box
cv2.rectangle(org_img, (X, y), (X + w,
y +h), (0, 0, 255), 2)
else:
# Identify with GREEN bounding box
cv2.rectangle(org_img, (X, y), (X + w,
y +h), (0, 255, 0), 2)

# Print the area of the blob
#print(f"Blob {label}: Area = {area}
pixels")

# Calculate the Percentage of Over and Under Sized
batching
if filt_stats["tot_valid_blobs"] > @ :
filt_stats["percent_under"] =
round((filt_stats["tot_under_Sized"]/filt_stats["tot_va
lid_blobs"])*100, 2)
filt_stats["percent_over"] =
round((filt_stats["tot_over_Sized"]/filt_stats["tot_val
id_blobs"])*100, 2)
else:
filt_stats["percent_under"] = ©
filt_stats["percent_over"] = 0

return org_img_copy, org_img, filt_stats

IV. RESULTS. [900 WORDS]

A. Grayscale Conversion:

Input Image:



Original Image of Blueberries
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Figure 6 Original Input Image RGB

Output Image:

Grayscale Image

Figure 7 Grayscale Converted Image

Grayscale conversion involves converting a color image
(commonly represented in the RGB color space) into a single-
channel grayscale image. The grayscale image represents the
intensity of each pixel, ranging from 0 (black) to 255 (white).

It’s observed that Each pixel in the grayscale image carries

only one value that corresponds to the brightness of the
corresponding pixel in the color image.

B. Noise Removal and Contrast Enhancement:
Output:
De-noised, Enhanced Image
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Figure 8 Noise Removed, Enhanced Image

We can see the foreground objects are smoother and more
blurred after noise filtering. The application tested both types
of blurring and selected Median blurring for the application
because it effectively removes salt-and-pepper noise while
preserving the edges and features of the objects being
analyzed.

Unlike Gaussian blur, which may blur edges and boundaries,
median blur replaces noisy pixels with the median value of
the neighborhood, ensuring that extreme values caused by
noise do not affect the overall analysis.

By incorporating noise removal and contrast enhancement in
image processing applications, the resulting images are
cleaner, more visually appealing, and better suited for
subsequent analysis tasks, such as object detection,
segmentation, and feature extraction.

C. Binarzation/Thresholding:
Output:

Global Thresholding

Figure 9 Thresholded Image - Global

Adaptive Thresholding
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Figure 10 Thresholded Image — Adaptive

We have tested both Global thresholding and adaptive
thresholding for image binarization to separate foreground
objects from background regions based on pixel intensities.

Global Thresholding observations:
e Foreground objects are preserved more.
e Simple method using a single threshold value for the
entire image.
e Assigns pixels below the threshold
background and above to the foreground.
e Suitable for images with uniform lighting and
consistent foreground-background separation.
Adaptive Thresholding Observations:
e Edges are preserved better than global thresholding,
but the inner body is more eroded than global
thresholding.

to the



e Calculates different threshold values for different
regions of the image.

e Considers local pixel intensity variations by
dividing the image into smaller regions.

e Effective for images with lighting variations,
shadows, or uneven backgrounds.

Therefore, Global thresholding is chosen due to the images
having consistent foreground-background intensities in a
controlled environment. It offers computational efficiency
and easy implementation.

D. Morphological Image Operations:
Input Image:

Thresholded Image

Figure 11 Input image for Morphological processing

Output Image:

Morphological Processed Image

Figure 12 Output image after Morphological Processing

From the output image we can observe that the holes and non-
uniformities from the thresholding are recovered from the
morphological processing.

The following Morphological Processing Techniques are
utilized for the application.

Morphological closing, achieved through dilation followed
by erosion using an 11x11 square-shaped kernel, is employed
to fill gaps in blobs and smoothen their boundaries.

Morphological erosion with a smaller 3x3 square kernel
reduces the size of bright regions, aiding in distinguishing
closely positioned blobs.

On the other hand, morphological dilation, employing a
larger 5x5 square kernel, enlarges bright regions to fill small
gaps within blobs caused by thresholding or erosion.

By employing morphological closing, erosion, and dilation in
sequence, the accuracy of blob detection and the separation
of adjacent blobs are significantly improved. Morphological
closing fills gaps and smooths blobs, erosion aids in
distinguishing closely connected blobs, and dilation ensures
that small gaps within each blueberry are filled, leading to
more precise and accurate detection of individual blobs in the
final output.

E. Image Segmentation and valid Blobs Detection:

Valid Blobs Detected
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Figure 13 Blobs detected and added bounding boxes.

Bounding boxes of black color were calculated and masked
on top of the original image to verify the blob detection and
bounding box calculations.

Each blob marked with bounding boxes is segmented from
the background in a stepwise manner. First, thresholding is
applied to convert the preprocessed image into a binary image
based on intensity, using either global or adaptive
thresholding. Next, morphological processing is performed,
including closing, erosion, and dilation, to enhance blob
detection accuracy and separate adjacent blobs.

Connected component analysis is then conducted on the
binary image to identify and label individual blobs or regions
of interest. A blob is considered valid based on application
criteria, with a minimum area threshold that can be
configured via command-line arguments.

F. Dimensional Analysis and Filtering.

The aim of the application is to conduct dimensional analysis
and filtering of objects to assess specific statistics and
manufacturing information. This involves performing
statistical analysis on collected dimensional measurements to
identify variations, trends, and distributions. The results are
then presented through reports or visual representations like



statistical charts, histograms, or control charts to showcase
the measured dimensions, deviations, and trends.

Statistical Analysis Output:

Measurement Analysis Statistics of the blobs

Total Valid Objects in the Imag
Total Over Sized Objects in the Image: 8

Total Under Sized Objects in the Image: 1
Percentage of LOW Sized products in the batch: 3.85%
Percentage of OVER Sized products in the batch: 38.77%

Figure 14 Statistical Analysis output

Visualization: Filtered Blobs

Filtered: Over/Under Sized Blobs
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Figure 15 Visualization of Filtered Blobs

Observation:
e Undersized blobs: Blue bounding Box.
e  Oversized blobs: Red bounding Box
e  Acceptable range Blobs: Green bounding box.

For this demonstration using a batch of blueberries, the
following simple filtering criteria is defined:
e Threshold value to detect Oversized blueberries.
(Configurable via command line)
e Threshold value to detect Undersized blueberries.
(Configurable via command line)

Analyzed the measured dimension (Area) to assess their
compliance with the specified tolerances. Compare the
measurements against predefined criteria or dimensional
specifications to determine whether the product meets quality
control standards.

G. Unsuccessful Result.

Figure 17 Unsuccessful measurement Analysis

While testing a batch of potato chips, we faced unsuccessful
blob detection which results in false measurement analysis.
The issue occurred when the segmentation process fails to
accurately separate neighboring chips due to improper
thresholding and morphological processing. This failure lead
to connected components, where adjacent chips become
fused together into a single blob during connected component
analysis.

The issue of improper segmentation may arise in cases where
the intensity or color variations between neighboring chips
are subtle, making it difficult for the thresholding technique
to distinguish them effectively. As a result, a single threshold
value might not be sufficient to differentiate adjacent chips,
causing them to be grouped together as a single object during
connected component analysis.

Additionally, the application of morphological operations,
such as dilation and erosion, can further exacerbate the
problem if the kernel sizes are not appropriately chosen.
Incorrect kernel sizes may cause neighboring chips to merge
or erode, leading to distorted or fused blob shapes.

Due to the merging of neighboring chips during the
segmentation process, filtering criteria based on blob size or
shape might not be effectively applied. Consequently, the
measurement and analysis of individual chips' dimensions
become unreliable, potentially impacting the quality control
assessments and batch evaluation for manufacturing.

V. Conclusion: -

[465 Words] The implemented dimensional analysis for
quality control in manufacturing using blob detection,
focusing on image processing techniques such as noise
reduction, thresholding, morphological operations, and
image segmentation, has demonstrated both effectiveness and
limitations.

In scenarios where objects are well-separated and lighting
conditions are favorable, the effectiveness of the project
becomes evident. The blob detection algorithm accurately
and reliably identifies the relevant components or features,
enabling precise dimensional analysis. This success is
particularly pronounced in datasets with spherical objects,
such as blueberries, where the distinctive shapes and
sufficient spacing between each object facilitate accurate
blob detection and dimensional measurements.



The successful parameter ranges identified during the
project contribute significantly to the robustness and
accuracy of the dimensional analysis. The best global
thresholding range of 135 to 150 has proven to be effective in
segmenting objects from the background and generating
binary images suitable for further processing.

The choice of parameter values for morphological
operations has been critical in ensuring precise blob
detection. The median filter with a kernel size of 11
effectively reduced noise and improved the quality of the
preprocessed images. A closing kernel size of 11x11 and a
dilation kernel size of 5 assisted in filling gaps and restoring
blob shapes, respectively. Additionally, an erosion kernel
size of 3 helped to smooth the blob contours.

However, it is worth noting that the segmentation approach
faced challenges in cases where objects overlapped with each
other or when the lighting conditions were poor. These
challenging scenarios led to a degradation in the performance
of the segmentation technique, resulting in inaccuracies in
blob detection and potentially impacting the dimensional
analysis results. Despite these limitations, the project has
successfully demonstrated the practicality and relevance of
employing image processing techniques in quality control for
manufacturing.

One of the project's strengths lies in its ability to address noise
artifacts effectively. By setting the minimum size (area) for a
valid blob, such as 1000 pixels in this case, the system
efficiently filtered out small noise artifacts and ensured that
only significant blobs were considered during the analysis.
This filtering mechanism enhanced the reliability of the
dimensional analysis by focusing on meaningful components
while reducing the impact of undesired artifacts. Thus, the
incorporation of the minimum size criterion has proved to be
valuable in improving the accuracy and validity of the
measured dimensional data.

In conclusion, the dimensional analysis for quality control
in manufacturing using blob detection and image processing
techniques has proven effective within certain conditions and
parameter ranges. While the project successfully automates
dimensional analysis and defect detection, further
improvements are possible by addressing challenges related
to object overlapping and varying lighting conditions. This
work sets the foundation for enhancing quality control
practices in manufacturing industries, opening avenues for
future research in developing more robust and adaptable
image processing algorithms.
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